Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2017  |  Volume : 13  |  Issue : 49  |  Page : 63-68

In vitro Toxicity and genotoxic activity of aqueous leaf extracts from four varieties of Olea europea (L)

1 University of Antwerp, Department of Biomedical Sciences, Antwerp, Belgium
2 Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, Monastir, Tunisia
3 Scientific Institute of Public Health, Toxicology Unit, Brussels, Belgium
4 The Olive Tree Institute, Sousse Resort, Sousse, Tunisia
5 Laboratory of Genetic Biodiversity and Valorisation of Bio Resources, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia

Correspondence Address:
Dr. Luc Verschaeve
Department of Food, Medicines and Consumers Safety, Toxicology Unit, Scientific Institute of Public health (WIV-ISP), Brussels
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-1296.203980

Rights and Permissions

Aim: Despite its therapeutic value almost nothing is known about potential adverse health effects of Olea europea L. We therefore investigated the in vitro toxicity and genotoxicity of leaf extracts of this plant. Material and Methods: Extracts from olive tree leaves were obtained from four different regions in Tunisia. We investigated the in vitro toxicity, genotoxicity and antigenotoxicity of their aqueous extracts using the neutral red (NR) uptake, Vitotox and alkaline comet assays. Results: None of the extracts were found to be toxic and none of them were genotoxic, although some doubt exists for the extract obtained at Meski (North of Tunisia). On the basis of the Vitotox test only, none of the extracts appeared to have antigenotoxic (or cogenotoxic) properties. Discussion: The negative genotoxicity underline the safe use of the leaves, for example, as hypoglycemic and antidiabetic preparations. Lack of antigenotoxicity may indicate that the previously reported anticancer effects do not result from protection against genotoxicity. Abbreviation list: BaP : benzo(α)pyrene, EMS: ethyl methane sulfonate, LMP: low melting point, NI50: 50% inhibition of NRU, NR: neutral red, NRU: neutral red uptake, OD: optical density, PBS: phosphate buffer saline, SDS: sodium dodecyl sulphate, S/N: signal to noise ratio, 4NQO : 4-nitroquinoline oxide

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded124    
    Comments [Add]    
    Cited by others 4    

Recommend this journal