Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2017  |  Volume : 13  |  Issue : 49  |  Page : 22-25

Fatty acid profiling and in vitro antihyperglycemic effect of Leucas cephalotes (Roth) spreng via carbohydrate hydrolyzing enzyme inhibition

1 Phytochemistry Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
2 Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
3 Department of Biotechnology, Kumaun University, Nainital, India

Correspondence Address:
Dr. Mahesh Pal
Phytochemistry Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-1296.203993

Rights and Permissions

Background: Leucas cephalotes has been used by many tribes to treat variety of diseases and known to have many essential secondary metabolites. To the best of our knowledge, it is the first comparative analysis of total fatty acid (FA) composition and α-amylase inhibition activity of L. cephalotes. Objective: The present study is carried out to explore the antihyperglycemic activity and FA contents of all parts of L. cephalotes. Material and Method: Fruits, leaves, stems, and roots part of L. cephalotes have been extracted in ethanol. Simultaneously, all plant parts have been extracted in hexane with Soxhlet extraction. Ethanolic extracts have been evaluated for antihyperglycemic activity and hexane extract have been analyzed for FA identification. Result: The present study indicated that ethanolic extract of fruit and leaves have shown significant α-amylase inhibitory activity with IC50 value of 92.86 ± 0.89 and 98.09 ± 0.69 μg/mL, respectively. FA composition of all the parts of L. cephalotes was analyzed by GC/MS. Nineteen FAs have been identified in all parts of L. cephalotes in which palmitic acid, oleic acid, linolenic acid, and linoleic acid were major FAs. Conclusion: The study indicates that L. cephalotes has significant potential to inhibit α-amylase enzyme and it is a rich source of essential FAs. Abbreviations used: DM: Diabetes Mellitus, FA: Fatty Acid, FFAs: Free Fatty Acids, FAME: Fatty Acid Methyl Ester, IC50: Inhibitor Concentration, GC-MS: Gas ChromatographyMass Spectrophotometer

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded109    
    Comments [Add]    
    Cited by others 1    

Recommend this journal