ORIGINAL ARTICLE |
|
Year : 2016 | Volume
: 12
| Issue : 46 | Page : 109-113 |
|
Neuroprotective properties of compounds extracted from Dianthus superbus L. against glutamate-induced cell death in HT22 cells
Bo-Ra Yun1, Hye Jin Yang1, Jin Bae Weon1, Jiwoo Lee1, Min Rye Eom1, Choong Je Ma2
1 Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea 2 Department of Medical Biomaterials Engineering, College of Biomedical Science; Department of Medical Biomaterials Engineering, Research Institute of Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
Correspondence Address:
Choong Je Ma Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Hyoja-2 Dong, Chuncheon 200701 Korea
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0973-1296.177905
|
|
Background: Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. Objective: In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. Materials and Methods: New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. Conclusion: In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|