Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2015  |  Volume : 11  |  Issue : 44  |  Page : 550-555

In silico screening of antibacterial compounds from herbal sources against vibrio cholerae

Department of Biotechnology, Madhav Institute of Technology and Science, Gwalior, Madhya Pradesh, India

Correspondence Address:
Hotam Singh Chaudhary
Department of Biotechnology, MITS, Gwalior, Madhya Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-1296.172960

Rights and Permissions

Background: The prolonged use of antibiotic viz., tetracycline, quinolones, ampicillin, etc., to reduce the infection of cholera, may failed due to the emergence of new Vibrio cholerae antibiotics resistant strains. Moreover, these antibiotics even restricted for patient suffering from severe dehydration. Hence, there is a call to find an alternative therapeutics against V. cholerae. The natures serve different herbs in its lap which might contain several natural therapeutic compounds almost all diseases. Computer-aided designing is the initial steps for screening the novel inhibitors. Objective: To identify and evaluate natural compounds with low side effects with high efficacy against V. cholerae has been done. Materials and Methods: In silico screening, absorption, digestion, metabolism, and excretion (ADME), and docking of herbal compounds have been performed on to the target ToxT (transcriptional activator of V. cholerae). The compound with good ADME properties and drug-likeness property were subjected to docking. Results: From 70 herbal compounds, some compounds such as aloin, campesterol, lupeol, and ursolic acid showed a violation of the rule of five and compounds such as lupeol and beta carotene showed negative binding energy. Luteolin, catechin, brevifolin, etc., compounds were selected based on ADME, drug-likeness property, and docking studies. Conclusion: Two compounds named catechin and luteolin showed better inhibition properties against ToxT and good ADME and drug-likeness property were selected as a better lead molecule for drug development in future. The Genetic Optimization for Ligand Docking fitness score for catechin is 48.74 kcal/mol and luteolin 38.12 kcal/mol.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded320    
    Comments [Add]    
    Cited by others 3    

Recommend this journal