Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2013  |  Volume : 9  |  Issue : 35  |  Page : 220-226

Effects of honeybee (Apis mellifera) venom on keratinocyte migration in vitro

1 Department of Agricultural Biology, National Academy of Agricultural Science, Suwon, South Korea
2 Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
3 Manuka Doctor, Auckland, NewZealand

Correspondence Address:
Sang Mi Han
National Academy of Agricultural Science, Suwon
South Korea
Login to access the Email id

Source of Support: Supported by a grant (Code #: PJ009534) from the BioGreen 21 program, Rural Development Administration, Korea., Conflict of Interest: None

DOI: 10.4103/0973-1296.113271

Rights and Permissions

Background: Since the ancient times the skin aging application of honeybee venom (BV) is practiced and persisted until nowadays. The present study evaluated the effect of the honeybee venom (BV) on keratinocyte migration in wound healing model in vitro. Objective: To access BV further as a cosmetic ingredient and a potential external application for topical uses, we performed studies to investigate the biologic effect of BV treatment on keratinocyte proliferation and migration in vitro. Material and Methods: BV cytotoxicity was assessed by using a 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl tetrazolium bromide (MTT) assay over 24 h. To assess BV genotoxicity, damage to human epidermal keratinocyte (HEK) was evaluated using the Comet assay. HEK migration was evaluated using a commercial wound healing kit. The skin pro-inflammatory cytokines interleukin (IL)-8 and tumor necrosis factor (TNF)-α were examined to evaluate the pro-inflammatory response to BV. Results: It was found that BV (<100 μg/ml) was not cytotoxic and stimulated more HEK proliferation and migration compared to negative control, and did not induce DNA damage. There were also decreases in IL-8 and TNF-α expression levels in HEK at all time points. Conclusion: These findings highlight the potential of topical application of BV for promoting cell regeneration and wound treatment.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded101    
    Comments [Add]    
    Cited by others 10    

Recommend this journal