|
 |
ORIGINAL ARTICLE |
|
Year : 2011 | Volume
: 7
| Issue : 25 | Page : 40-45 |
|
|
Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures
Chunpeng Wan1, Yanying Yu2, Shouran Zhou3, Wei Liu1, Shuge Tian4, Shuwen Cao5
1 State Key Laboratory of Food Science & Technology, Nanchang University, Nanchang - 330 047, Jiangxi, China 2 Department of chemistry, Nanchang University, Nanchang - 330 031, Jiangxi, China 3 Jiangxi University of Traditional Chinese Medicine, Nanchang - 330 006, Jiangxi, China 4 Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi - 830 011, Xinjiang, China 5 State Key Laboratory of Food Science & Technology, Nanchang University, Nanchang - 330 047, Jiangxi; Department of chemistry, Nanchang University, Nanchang - 330 031, Jiangxi, China
Date of Submission | 12-Jun-2010 |
Date of Decision | 15-Aug-2010 |
Date of Web Publication | 20-Jan-2011 |
Correspondence Address: Shuwen Cao State Key Laboratory of Food Science & Technology, Nanchang University, Nanchang - 330 047, Jiangxi China
 Source of Support: This project was supported by the graduate student innovation fund of Jiangxi (No.YC10A019), Conflict of Interest: None  | Check |
DOI: 10.4103/0973-1296.75900
Abstract | | |
Background: Extraction temperature influences the total phenolic content (TPC), total flavonoid content (TFC) of medicinal plant extracts to a great extend. TPC and TFC are the principle activity constituents present in the plant. The effects of extraction temperature on TPC, TFC and free radical-scavenging capacity of Gynura divaricata leaf extracts are worth to study. Materials and Methods: Folin-Ciocalteu and aluminum chloride colorimetric assay were used to determine the TPC and TFC of Gynura divaricata leaf extracts at different temperatures. The antioxidant and free radical-scavenging activity were measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) and phosphomolybdenum methods. Results: TPC and TFC were significantly elevated with increasing extraction temperature (from 40°C to 100°C). However, TPC and TFC were not significantly different (P > 0.05) at the extraction temperatures 90°C and 100°C. Also, the extracts obtained at a higher temperature exhibited a significant free radical-scavenging activity compared with extraction at lower temperatures (P < 0.05). The TPCs (13.95-36.68 mg gallic acid equivalent/g dry material) were highly correlated with DPPH (R2 = 0.9229), ABTS (R2 = 0.9951) free radical-scavenging capacity, and total antioxidant activity (R2 = 0.9872) evaluated by phosphomolybdenum method. Conclusion: The TPC and TFC of G. divaricata leaf was significantly influenced by the extraction temperatures, which were the main antioxidant constituents present in the G. divaricata plant. Keywords: Antioxidant activity, extraction temperature, Gynura divaricata, total phenolic content, total flavonoid content
How to cite this article: Wan C, Yu Y, Zhou S, Liu W, Tian S, Cao S. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures. Phcog Mag 2011;7:40-5 |
How to cite this URL: Wan C, Yu Y, Zhou S, Liu W, Tian S, Cao S. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures. Phcog Mag [serial online] 2011 [cited 2022 Jun 29];7:40-5. Available from: http://www.phcog.com/text.asp?2011/7/25/40/75900 |
Introduction | |  |
Reactive free radicals, including superoxide, hydroxyl radical, and peroxyl radical, generally result in degradation of protein, lipid peroxidation, and oxidation of DNA, which have been considered to be linked with many chronic diseases, such as diabetes, cancers, and atherosclerosis. [1],[2] Polyphenols are the major antioxidant constituents isolated from many medicinal and edible plants. [3] The extraction process does affect the yield, and to some extent, affects the stability of polyphenols. [4],[5]
Gynura divaricata DC. (Compositae) is a traditional Chinese medicinal plant, commonly used for the treatment of bronchitis, pulmonary tuberculosis, pertussis, sore eye, toothache, rheumatic arthralgia, and diabetes in folk medicine. [6] The ethanol extract of G. divaricata has hypoglycemic activity in animal models. [7],[8] It has also been reported that many constituents with antiproliferation activity exist in G. divaricata.[9],[10] The chemical constituents of G. divaricata leaves include flavonoids, phenolics, cerebrosides, polysaccharide, alkaloids, terpenoids, and sterols. [9],[10],[11],[12] Phenolics and flavonoids are the major antioxidant components of Gynura procumbens leaves. A previous report indicated that the concentration of phenolics in the extract is significantly influenced by the extraction temperature; that is, increasing the extraction temperature will decrease the total phenolic content (TPC). [13] However, no literature data are available on the effect of extraction temperature on the TPC, total flavonoid content (TFC), and free radical-scavenging capacity of G. divaricata leaves. Recently, we used single-factor experiments to optimize the extraction conditions of TPC from G. divaricata. An interesting phenomenon was found where the TPC was significantly elevated with increasing the extraction temperature, which was quite different from the same genus plants described in the literature. [13] The present study aims to evaluate the effect of extraction temperature on TPC, TFC, and free radical-scavenging capacity of G. divaricata leaves.
Materials and Methods | |  |
Chemicals and reagents
Gallic acid (GA), trolox, quercetin, and 1,1-diphenyl-2-picrylhydrazyl (DPPH), and Folin-Ciocalteu's phenol reagent were purchased from Sigma Chemical Company (St. Louis, MO, USA) and 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was obtained from TCI-SU (Tokyo, Japan). Potassium persulfate, aluminum chloride, sodium acetate, and all solvents used were of analytical grade and purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). Visible spectra measurements were done using UV-2450 spectrophotometer (Shimadzu, Japan).
Plant material
The G. divaricata was obtained in 2009 from Guangdong Province, China. A voucher specimen (201001) was deposited at the Department of Chemistry, Nanchang University. The leaves of G. divaricata were dried at 40°C in a hot air oven and finely powdered.
Extraction
Samples of the powered leaf (1 g) were weighed and transferred into conical flasks. The samples were refluxed and extracted for 30 min with 50 mL of 45% aqueous ethanol at different temperatures (40°C, 60°C, 80°C, 90°C, 100°C). Single-factor experiments demonstrated that the 45% aqueous ethanol and 30 min extraction were the optimal extraction conditions (data not shown). The extracts were centrifuged (10000 g, Beckman, USA) and the supernatant was adjusted to a final volume of 50 mL with 45% aqueous ethanol.
Determination of total phenolic and flavonoid content
The TPC in the extracts was determined by using Folin-Ciocalteu's phenol reagent and external calibration with GA and the results were expressed as mg GA/g dry material. [14] Briefly, 0.2 mL of extract solution in a test tube and 5 mL of Folin-Ciocalteu's phenol reagent (diluted 10 times) were added and the contents mixed thoroughly. After 4 min, 4 mL of sodium carbonate (7.5% w/v) was added to the mixture. The mixed solution was then immediately diluted to required volume (25 mL) with deionized distilled water and mixed thoroughly. The tubes were allowed to stand for 90 min before absorbance at 760 nm was measured by using UV-2450 spectrophotometer (Shimadzu, Japan). The TPC were calculated by using GA calibration curve. The calibration equation for GA was Y = 0.07411X + 0.0589 (R2 = 0.9977).
The TFC in the extracts were determined by using the colorimetric assay with slight modifications. [15] Briefly, 0.3 mL solution of extracts in 45% ethanol were separately mixed with 8 mL of 10% aluminum chloride, 4 mL of 0.2 M sodium acetate. The mixed solution was then immediately diluted to volume (25 mL) with deionized distilled water and mixed thoroughly and left at room temperature for 30 min. The absorbance of the reaction mixture was measured at 350 nm by using UV-2450 spectrophotometer (Shimadzu, Japan). TFCs were calculated by using kaempferol calibration curve. The calibration equation for kaempferol was Y = 0.04177X + 0.014181 (R2 = 0.9993). The results were expressed as mg kaempferol/g dry material.
DPPH free radical-scavenging capacity
The free radical-scavenging activity of the extracts was evaluated by 1, 1, -diphenyl-2-picryl-hydrazil (DPPH) using the method of Sajjad and Patel [16],[17] with slight modifications. Briefly, DPPH solution (0.6 mM) was prepared in ethanol and 0.5 mL of this solution was mixed with 0.5 mL of 10-fold diluted extracts (final concentration 0.20 mg/mL dry material). The volume of the solution was adjusted with ethanol to a final volume of 5 mL. After incubation in a dark place for 30 min at room temperature, the absorbance of the mixture was measured at 515 nm against ethanol as blank using UV-2450 spectrophotometer (Shimadzu, Japan). Trolox (0.15 mg/mL) and Quercetin (0.1 mg/mL) were used as positive controls. The activities of the samples were evaluated by comparison with a control (containing 0.5 mL of DPPH solution and 4.5 mL of ethanol). Each sample was measured in triplicate and averaged. The activity was calculated according to the following formula:
DPPH scavenging activity (%) = [(AC − AS )/AC ] × 100
where AC is the absorbance value of the control and AS is the absorbance value of the added test samples solution.
ABTS cation free radical-scavenging activity
For ABTS assay, the procedure followed was the method of Dimitrina and Roberta [18],[19] with some modifications. ABTS was dissolved in water to make a concentration of 7 mmol/L. ABTS + was produced by reacting the ABTS stock solution with 2.45 mmol/L potassium persulfate (final concentration) and allowing the mixture to stand in the dark at room temperature for 12-16 h before use. For the test of samples, the ABTS + stock solution was diluted with 80% methanol to an absorbance of 0.70 ± 0.02 at 734 nm. After the addition of 4.85 mL of diluted ABTS + to 0.15 mL of 10-fold diluted samples (final concentration 0.06 mg/mL dry material), the absorbance reading was taken 6 min after the initial mixing. Trolox (0.1 mg/mL) and Quercetin (0.05 mg/mL) were used as positive controls. The activities of the samples were evaluated by comparison with a control (containing 4.85 mL of ABTS solution and 0.15 mL of 45% ethanol). Each sample was measured in triplicate and averaged. This activity is given as percentage ABTS + scavenging that is calculated by the following formula:
ABTS + scavenging activity (%) = [(AC − AS )/AC ] × 100
where AC is the absorbance value of the control and AS is the absorbance value of the added samples test solution.
Evaluation of total antioxidant activity by phosphomolybdenum method
The total antioxidant capacity of the extracts was evaluated according to the method described by Prieto et al. [20] An aliquot of 0.5 mL of samples solution was combined with 4.5 mL of reagent solution (0.6 M sulfuric acid, 28 mM sodium phosphate, and 4 mM ammonium molybdate). In case of blank, 0.5 mL of 45% ethanol was used in place of sample. The tubes were incubated in a boiling water bath at 95°C for 90 min. After the samples were cooled to room temperature, the absorbance of the aqueous solution of each sample was measured at 695 nm against blank in UV-2450 spectrophotometer (Shimadzu, Japan). The total antioxidant activity was expressed as the absorbance of the sample at 695 nm. The higher absorbance value indicated higher antioxidant activity. [21]
Statistical analysis
Results were given as mean ± standard deviation of 3 replicates. Experimental results were analyzed by SPSS version 16.0 (SPSS Inc. Chicago, IL). Differences between means were determined using one-way ANOVA and Duncan's test. The level of statistical significance was set at P ≤ 0.05.
Results | |  |
The effect of extraction temperature on total phenolic and total flavonoid content
[Table 1] shows the effect of different extraction temperatures on TPC and TFC of the extracts obtained. Increasing the extraction temperature increased TPC and TFC. However, at temperatures 90°C and above, the values were not significantly different (P > 0.05) with increasing extraction temperature. Although the maximum amount of TPC and TFC was obtained during extraction at 100°C, the values were not significantly different (P > 0.05) from those obtained at 90°C. For the extraction temperatures studied, temperature below 80°C showed a significantly lower total phenolic and total flavonoid contents compared with extractions at 90°C and 100°C. TPC and TFC of all the extracts at different temperatures studied increased in the order: 100°C > 90°C > 80°C > 60°C > 40°C. | Table 1: Effect of extraction temperature on total phenolic content and total flavonoid content
Click here to view |
The effect of extraction temperature on free radical-scavenging capacity
The results of free radical-scavenging capacity of the extracts obtained at different temperatures by DPPH and ABTS methods are shown in [Table 2]. All of the extracts demonstrated inhibitory activity against both the DPPH free radical and the ABTS cation free radical. The order of free radical-scavenging capacity of the extracts was 100°C > 90°C > 80°C > 60°C > 40°C. At 100°C, the extracts showed the highest free radical-scavenging capacity; however, the values were not significantly different from those (P > 0.05) obtained at 90°C and those of standard materials. | Table 2: Effect of extraction temperature on free radical-scavenging capacity
Click here to view |
The effect of extraction temperature on total antioxidant activity
The phosphomolybdate method has been used routinely to evaluate the total antioxidant capacity of plant extracts. [20],[21] In the presence of extracts, Mo (VI) is reduced to Mo (V) and forms a green colored phosphomolybdenum V complex, which shows a maximum absorbance at 695 nm. [Figure 1] shows that the antioxidant capacity of the extracts of G. divaricata leaves at different temperatures can be ranked in the order 100°C > 90°C > 80°C > 60°C > 40°C. Extracts at 100°C showed the highest total antioxidant activity; however, the values were not significantly different from those (P > 0.05) obtained at 90°C. This implies that the extracts at 90°C and 100°C have a strong antioxidant ability (P < 0.05) as compared with the extracts obtained at lower temperatures. | Figure 1: Effect of extraction temperature on total antioxidant activity. Values are means of 3 replicates ± SD; different letters within the same column indicate significant difference at P < 0.05 by Duncan's test
Click here to view |
The correlation between TPC and antioxidant activity
The correlation between TPC and TFC, antioxidant activity, and free radical-scavenging capacity of the extracts obtained at different temperatures is interesting to note. The Pearson correlation analysis [Table 3] revealed that the TPC and TFC showed strong correlations with DPPH radical scavenging capacity, ABTS cation radical scavenging capacity, and total antioxidant activity, with the correlation coefficient (R2 ) 0.9229, 0.9952, and 0.9872, respectively. This indicates that the antioxidant activity of the extract from G. divaricata leaves is due to its phenolic constituents. These results are in accordance with other reports in the literature, which showed positive strong correlation between antioxidant activities and TPCs. [22] Phytochemical screening showed that kaempferol and its derivatives are the major bioactive components in G. divaricata leaves, and this is in agreement with the study by Chen et al., [9] and these phytochemicals have been reported to possess high antioxidant and hypoglycemic activity. [23],[24] | Table 3: Correlations between the antioxidant activities and TPC and TFC of extracts of Gynura divaricata leaf
Click here to view |
Discussion | |  |
The present study was focused on TPC and TFC, in addition to the antioxidant activity of G. divaricata leaf extracts obtained at different temperatures. The influence of extraction temperature on TPC, TFC, and antioxidant activity of the 45% ethanol extracts was investigated. For all the extraction temperatures surveyed, the highest TPC, TFC, and antioxidant activities were observed in the extracts obtained at 100°C followed by extraction at 90°C. Significant lower levels of TPC and TFC were demonstrated by extractions at temperatures below 80°C. The TPC and TFC of extracts have strong positive correlation with the extraction temperature, with the correlation coefficient (R2 ) 0.9925 and 0.9928, respectively [Figure 2]. The results of the present study also indicate that there was a significant reduction in the total antioxidant activity and free radical-scavenging capacity of the extracts obtained at temperatures below 80°C compared to those extracted at 90°C or 100°C. This was expected due to the elevation the TPC and TFC of extracts at higher temperatures. Our findings are in contrast to Akowuah et al.'s study [13] on G. procumbens, indicating that TPC and free radical scavenging activities decreased with increasing extraction temperatures. Also our findings implied that extraction temperatures will have different effects on the bioactive components of identical genus plants, although they may share some uniform constituents. It is generally considered that extraction at a high temperature will lead to a degradation of some bioactive compounds, whereas recently some researches have demonstrated that this is not always true, especially with regard to the polyphenols with antioxidant activity. Increasing the extraction temperature has been found to enhance the recovery of phenolic compounds as described in previous reports. [25],[26] The mechanism maybe is that increasing extraction temperature promotes solvent extraction by enhancing both diffusion coefficients and the solubility of polyphenol content. [27],[28] Also, increasing extraction temperature will contribute to the release of bound polyphenols in plants with the breakdown of cellular constituents of plant cells which leads to increased cell membrane permeability. Moreover, release of these bound polyphenols could further reduce the chances of those polyphenols coagulating with lipoprotein. Thereby enhancing solubility of the polyphenols and inhibiting coagulation with lipoprotein will increase polyphenols yield. [29]  | Figure 2: Relationship between (a) extraction temperature and total phenolic contents, (b) extraction temperature and total flavonoid contents
Click here to view |
As a dual purpose plant, for its medicinal and edible purpose, G. divaricata was extensively used to treat diabetics in folk medicine. Flavonoids are the bioactive constituents of the plant and are influenced by the decoction temperature; however, there is not enough information about decoction temperature of this medicinal plant. We have herein provided the available information about decoction temperature of the plant; demonstrated the antioxidant activities of the ethanol extract of G. divaricata; and confirmed the significant influence of extraction temperature on the phenolic and flavonoid contents. The results emphasize the extract of G. divaricata has possessed significant antioxidant properties. Therefore, G. divaricata would be a potential source of natural antioxidants and nourishment. The consumption of G. divaricata in the local people might give positive function of health protection against oxidative damages. With the ascertained antioxidant activity of this plant, the separation and identification of the antioxidative components in the ethanol extract and using response-surface methodology (RSM) optimization, the extraction of phenolic compounds should be further investigated.
Conclusion | |  |
The optimal extraction temperature of G. divaricata leaf, chosen as a comparison between the yield of phenolic components (TPC and TFC) and their antioxidant and free radical-scavenging capacities (DPPH and ABTS), were 45% ethanol for 30 min at 90°C. Significant correlation was found for TPC and TFC with different extraction temperatures. Also TPC and TFC have significant correlation with the total antioxidant activity and free radical-scavenging capacities. This study provides constructive information for further optimization on the extraction of phenolic compounds from G. divaricata using RSM.
References | |  |
1. | Riley Pa. Free-radicals in biology-oxidative stress and the effects of ionizing-radiation. Int J Radiat Biol 1994;65:27-33.  [PUBMED] |
2. | Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 2004;44:275-95.  [PUBMED] |
3. | Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J Agric Food Chem 2009;57:1655-66.  [PUBMED] [FULLTEXT] |
4. | Marete EN, Jacquier JC, O'riordan D. Effects of extraction temperature on the phenolic and parthenolide contents, and colour of aqueous feverfew (Tanacetum parthenium) extracts. Food Chem 2009;117:226-31.  |
5. | Heck CI, Schmalko M, De Mejia EG. Effect of growing and drying conditions on the phenolic composition of Mate teas (Ilex paraguariensis). J Agric Food Chem 2008;56:8394-403.  [PUBMED] [FULLTEXT] |
6. | Chen L, Li H, Song H, Zhang G. A new cerebroside from Gynura divaricata. Fitoterapia 2009;80:517-20.  [PUBMED] [FULLTEXT] |
7. | Jiang MH, Hu JZ, Qiu WG, Qian Q, Tan M, Wu K, et al. Hypoglycemic and anti-anoxia effect of polysaccharides and flavonoids in Gynura divaricata (L.) DC. China J Hosp Pharm 2009;29:1074-6.  |
8. | Zhang XF, Tan BK. Effects of an ethanolic extract of Gynura procumbens on serum glucose, cholesterol and triglyceride levels in normal and streptozotocin-induced diabetic rats. Singapore Med J 2000;41:9-13.  [PUBMED] |
9. | Chen L, Wang JJ, Song HT, Zhang GG, Qin LP. New cytotoxic cerebroside from Gynura divaricata. Chin Chem Lett 2009;20:1091-3.  |
10. | Chen SC, Hong LL, Chang CY, Chen CJ, Hsu MH, Huang YC, et al. Antiproliferative constituents from Gynura divaricata subsp. formosana. Chin Pharm J 2003;55:109-19.  |
11. | Chen L, Wang JJ, Zhang GG, Song HT, Qin LP. A new cerebroside from Gynura divaricata. Nat Prod Res 2009;23:1330-6.  [PUBMED] [FULLTEXT] |
12. | Roeder E, Eckert A, Wiedenfeld H. Pyrrolizidine alkaloids from Gynura divaricata. Planta Med 1996;62:386.  [PUBMED] [FULLTEXT] |
13. | Akowuah GA, Mariam A, Chin JH. The effect of extraction temperature on total phenols and antioxidant activity of Gynura procumbens leaf. Pharmacogn Mag 2009;4:81-5.  |
14. | Gutierrez RM, Navarro YT. Antioxidant and hepatoprotective effects of the methanol extract of the leaves of Satureja macrostema. Pharmacogn Mag 2010;6:125-31.  [PUBMED] [FULLTEXT] |
15. | Basniwal PK, Suthar M, Rathore GS, Gupta R, Kumar V, Pareek A, et al. In-vitro antioxidant activity of hot aqueous extract of Helicteres isora Linn. fruits. Nat Prod Radiance 2009;8:483-7.  |
16. | Sajjad KM, Khanam S, Deepak M, Shivananda BG. Antioxidant activity of a new diarylheptanoid from Zingiberofficinale. Pharmacogn Mag 2006;2:254-7.  |
17. | Patel A, Patel A, Patel A, Patel NM. Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea Linn. leaves (Leguminosae). Pharmacogn Res 2010;2,152-8.  |
18. | Zheleva-Dimitrova D, Nedialkov P, Kitanov G. Radical scavenging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria. Pharmacogn mag 2010;6:74-8.  [PUBMED] [FULLTEXT] |
19. | Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999;26:1231-7.  [PUBMED] [FULLTEXT] |
20. | Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem 1999;269:337-41.  [PUBMED] [FULLTEXT] |
21. | Prasad KN, Yang B, Yang SY, Chen YL, Zhao MM, Ashraf M, et al. Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chem 2009;116:1-7.  |
22. | Zhao HF, Fan W, Dong JJ, Lu J, Chen J, Shan LJ, et al. Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem 2008;107:296-304.  |
23. | Rosidah, Yam MF, Sadikun A, Asmawi MZ. Antioxidant potential of Gynura procumbens. Pharm Biol 2008;46:616-25.  |
24. | Akowuah GA, Sadikun A, Mariam A. Flavonoid identification and hypoglycemic studies of the butanol fraction from Gynura procumbens. Pharm Biol 2002;40:405-10.  |
25. | Durling NE, Catchpole OJ, Grey JB, Webby RF, Mitchell KA, Foo LY, et al. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol-water mixtures. Food Chem 2007;101:1417-24.  |
26. | Silva EM, Rogez H, Larondelle Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep Purif Technol 2007;55:381-7.  |
27. | Al-farsi, Lee CY. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem 2008;108:977-85.  |
28. | Wang J, Sun BG, Cao YP, Tian YA, Li XH. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem 2008;106:804-10.  |
29. | Zhang ZS, Li D, Wang LJ, Ozkan N, Chen XD, Mao ZH, et al. Optimization of ethanol-water extraction of lignans from flaxseed. Sep Purif Technol 2007;57:17-24.  |
[Figure 1], [Figure 2]
[Table 1], [Table 2], [Table 3]
This article has been cited by | 1 |
Antioxidant, Antimicrobial, and Insecticidal Properties of a Chemically Characterized Essential Oil from the Leaves of Dittrichia viscosa L. |
|
| Ibrahim Mssillou, Abdelkrim Agour, Aimad Allali, Hamza Saghrouchni, Mohammed Bourhia, Abdelfattah El Moussaoui, Ahmad Mohammad Salamatullah, Abdulhakeem Alzahrani, Mourad A. M. Aboul-Soud, John P. Giesy, Badiaa Lyoussi, Elhoussine Derwich | | Molecules. 2022; 27(7): 2282 | | [Pubmed] | [DOI] | | 2 |
Allantoin from Valuable Romanian Animal and Plant Sources with Promising Anti-Inflammatory Activity as a Nutricosmetic Ingredient |
|
| Rodica Mihaela Dinica, Cristina Sandu, Andreea Veronica Dediu Botezatu, Anna Cazanevscaia Busuioc, Fanica Balanescu, Maria Daniela Ionica Mihaila, Caterina Nela Dumitru, Bianca Furdui, Alina Viorica Iancu | | Sustainability. 2021; 13(18): 10170 | | [Pubmed] | [DOI] | | 3 |
Current Knowledge Regarding Pharmacological Profile and Chemical Constituents of Gynura procumbens |
|
| Ehfazul Haque, Mir Shahriar Kamal, Md. Rafat Tahsin, Raju Ahmed, Jakir Ahmed Choudhury, Abu Asad Choudhury, Shaila Kabir, Md. Shah Amran, Md. Sahab Uddin | | Current Topics in Medicinal Chemistry. 2021; 21 | | [Pubmed] | [DOI] | | 4 |
Eco-Friendly Synthesis, Biological Evaluation, and In Silico Molecular Docking Approach of Some New Quinoline Derivatives as Potential Antioxidant and Antibacterial Agents |
|
| Ahmed M. El-Saghier, Mohamed El-Naggar, Abdel Haleem M. Hussein, Abu-Bakr A. El-Adasy, M. Olish, Aboubakr H. Abdelmonsef | | Frontiers in Chemistry. 2021; 9 | | [Pubmed] | [DOI] | | 5 |
Comparative Phytochemicals and Antioxidant activity of various Solvent extracts of Zanthoxylum armatum leaves from different Geographical regions of Himachal Pradesh and their correlation analysis |
|
| Manjula Gautam, Vikas Kumar, Sharma Sharma, Anuradha Sourirajan, Kamal Dev | | Research Journal of Pharmacy and Technology. 2021; : 2270 | | [Pubmed] | [DOI] | | 6 |
The Effect of Ethanol Concentrations as The Extraction Solvent on Antioxidant Activity of Katuk (Sauropus androgynus (L.) Merr.) Leaves Extracts |
|
| Ni Putu Ermi Hikmawanti, Sofia Fatmawati, Anindita Wulan Asri | | IOP Conference Series: Earth and Environmental Science. 2021; 755(1): 012060 | | [Pubmed] | [DOI] | | 7 |
Angiogenesis is Differentially Modulated by Anthocyanin and Phenolic Acid Extracts from Wild Blueberry (V. angustifolium) Through PI3K Pathway |
|
| Panagiotis Tsakiroglou, James Weber, Sharon Ashworth, Cristian Del Bo’, Dorothy Klimis-Zacas | | Journal of Medicinal Food. 2021; 24(3): 226 | | [Pubmed] | [DOI] | | 8 |
Non alcoholic palm nectar from
Cocos nucifera
as a promising nutraceutical preparation
|
|
| Rajitha Panonnummal, Divya Gopinath, Aneesh Thankappan Presanna, Vidya Viswanad, Sabitha Mangalathillam | | Journal of Food Biochemistry. 2021; | | [Pubmed] | [DOI] | | 9 |
Ethnomedicinal uses, phytochemistry, and biological activities of plants of the genus Gynura |
|
| Md. Sazzadul Bari, Labony Khandokar, Ehfazul Haque, Barbara Romano, Raffaele Capasso, Veronique Seidel, Md. Areeful Haque, Mohammad Abdur Rashid | | Journal of Ethnopharmacology. 2021; 271: 113834 | | [Pubmed] | [DOI] | | 10 |
Gynura divaricata Water Extract Presented the Possibility to Enhance Neuronal Regeneration |
|
| Fahsai Kantawong, Chanakarn Saisuwan, Pirakorn Soeratanapant, Phenphichar Wanachantararak, Jiang Nan, Jianming Wu, Young-Tae Chang, Maria Ferraro | | Evidence-Based Complementary and Alternative Medicine. 2021; 2021: 1 | | [Pubmed] | [DOI] | | 11 |
Effect of Dietary Inclusion of Gynura divaricata (L.) on Growth Performance, Hematology, and Carcass Fat Deposition in Broilers |
|
| Chairat Jamjang, Suwanna Kijpakorn, Kris Angkanaporn | | The Journal of Poultry Science. 2020; 57(2): 114 | | [Pubmed] | [DOI] | | 12 |
Influence of kenaf (Hibiscus cannabinus L.) leaves powder on the physico-chemical, antioxidant and sensorial properties of wheat bread |
|
| Phey Yee Lim, Yan Yi Sim, Kar Lin Nyam | | Journal of Food Measurement and Characterization. 2020; 14(5): 2425 | | [Pubmed] | [DOI] | | 13 |
Effect of steam blanching and high temperature drying on the physicochemical properties, antioxidant activities and consumer acceptability of Hibiscus cannabinus leaves tea |
|
| Yen Teng Haw, Yan Yi Sim, Kar Lin Nyam | | Journal of Food Science and Technology. 2020; 57(12): 4588 | | [Pubmed] | [DOI] | | 14 |
Potential novel nutritional beverage using submerged fermentation with Bacillus subtilis WX-17 on brewers’ spent grains |
|
| Yong Xing Tan, Wai Kit Mok, Wei Ning Chen | | Heliyon. 2020; 6(6): e04155 | | [Pubmed] | [DOI] | | 15 |
Antioxidant and Anti-Inflammatory Effects of Genus Gynura: A Systematic Review |
|
| Jiah Ning Tan, Shamin Mohd Saffian, Fhataheya Buang, Zakiah Jubri, Ibrahim Jantan, Khairana Husain, Norsyahida Mohd Fauzi | | Frontiers in Pharmacology. 2020; 11 | | [Pubmed] | [DOI] | | 16 |
Evaluation of Pharmacological and Phytochemical Profiles of Piptadeniastrum africanum (Hook.f.) Brenan Stem Bark Extracts |
|
| Kouadio Ibrahime Sinan, Annalisa Chiavaroli, Giustino Orlando, Kouadio Bene, Gokhan Zengin, Zoltán Cziáky, József Jeko, Mohamad Fawzi Mahomoodally, Marie Carene Nancy Picot-Allain, Luigi Menghini, Lucia Recinella, Luigi Brunetti, Sheila Leone, Maria Chiara Ciferri, Simonetta Di Simone, Claudio Ferrante | | Biomolecules. 2020; 10(4): 516 | | [Pubmed] | [DOI] | | 17 |
Proline, Total Antioxidant Capacity, and OsP5CS Gene Activity in Radical and Plumule of Rice are Efficient Drought Tolerance Indicator Traits |
|
| Muhammad Abu Bakar Saddique, Zulfiqar Ali, Muhammad Ali Sher, Babar Farid, Rao Muhammad Ikram, Muhammad Saeed Ahmad, Vera Popovic | | International Journal of Agronomy. 2020; 2020: 1 | | [Pubmed] | [DOI] | | 18 |
Antioxidant Activities of Leaves and Fruits of Piper nigrum and Piper longum |
|
| Jobi Xavier, Seju Thomas | | Asian Journal of Plant Sciences. 2020; 19(2): 127 | | [Pubmed] | [DOI] | | 19 |
Phenolic and anthocyanin fractions from wild blueberries (
V. angustifolium
) differentially modulate endothelial cell migration partially through RHOA and RAC1
|
|
| Panagiotis Tsakiroglou, James Weber, Sharon Ashworth, Cristian Del Bo, Dorothy Klimis-Zacas | | Journal of Cellular Biochemistry. 2019; 120(7): 11056 | | [Pubmed] | [DOI] | | 20 |
Analysis of Improved Nutritional Composition of Potential Functional Food (Okara) after Probiotic Solid-State Fermentation |
|
| Sulagna Gupta, Jaslyn J. L. Lee, Wei Ning Chen | | Journal of Agricultural and Food Chemistry. 2018; 66(21): 5373 | | [Pubmed] | [DOI] | | 21 |
Identification of food preservative, stress relief compounds by GC–MS and HR-LC/Q-TOF/MS; evaluation of antioxidant activity of Acalypha indica leaves methanolic extract (in vitro) and polyphenolic fraction (in vivo) |
|
| Sahukari Ravi,Bhasha Shanmugam,Ganjikunta Venkata Subbaiah,Singamala Hari Prasad,Kesireddy Sathyavelu Reddy | | Journal of Food Science and Technology. 2017; | | [Pubmed] | [DOI] | | 22 |
Antioxidant, free radical scavenging and GC–MS composition of Cinnamomum iners Reinw. ex Blume |
|
| N.K. Udayaprakash,M. Ranjithkumar,S. Deepa,N. Sripriya,Abdulla A. Al-Arfaj,S. Bhuvaneswari | | Industrial Crops and Products. 2015; 69: 175 | | [Pubmed] | [DOI] | | 23 |
The Chemical Constituents and Biological Activities of the Essential Oil and the Extracts from Leaves ofGynura divaricata(L.) DC. Growing in Thailand |
|
| Nadechanok Jiangseubchatveera,Boonsom Liawruangrath,Saisunee Liawruangrath,John Korth,Stephen G. Pyne | | Journal of Essential Oil Bearing Plants. 2015; 18(3): 543 | | [Pubmed] | [DOI] | | 24 |
Evaluation of Ethnopharmacological and Antioxidant Potential ofZanthoxylum armatumDC. |
|
| Rabia Kanwal,Muhammad Arshad,Yamin Bibi,Saira Asif,Sunbal Khalil Chaudhari | | Journal of Chemistry. 2015; 2015: 1 | | [Pubmed] | [DOI] | | 25 |
Hypoglycemic activities of lyophilized powder of Gynura divaricata by improving antioxidant potential and insulin signaling in type 2 diabetic mice |
|
| Bing-Qing Xu,Ping Yang,Yu-Qing Zhang | | Food & Nutrition Research. 2015; 59(1): 29652 | | [Pubmed] | [DOI] | | 26 |
Hepatoprotective effects and antioxidant, antityrosinase activities of phloretin and phloretin isonicotinyl hydrazone |
|
| Ai-Ren Zuo,Yan-Ying Yu,Qing-Long Shu,Li-Xiang Zheng,Xiao-Min Wang,Shu-Hong Peng,Yan-Fei Xie,Shu-Wen Cao | | Journal of the Chinese Medical Association. 2014; | | [Pubmed] | [DOI] | | 27 |
Isolation and elucidation of pyrrolizidine alkaloids from tuber of Gynura pseudo-china (L.) DC |
|
| Windono, T. and Jenie, U.A. and Kardono, L.B.S. | | Journal of Applied Pharmaceutical Science. 2012; 2(5): 5-9 | | [Pubmed] | | 28 |
Study on the relation of structure and antioxidant activity of isorhamnetin, quercetin, phloretin, silybin and phloretin isonicotinyl hydrazone |
|
| Airen Zuo,Yu Yanying,Jing Li,Xu Binbin,Yu Xiongying,Qiu Yan,Cao Shuwen | | Free Radicals and Antioxidants. 2011; 1(4): 39 | | [Pubmed] | [DOI] | |
|
 |
 |
|