|
ORIGINAL ARTICLE |
|
Year : 2010 | Volume
: 6
| Issue : 23 | Page : 176-179 |
|
|
Cytotoxicity of hydro-alcoholic extracts of Cucurbita pepo and Solanum nigrum on HepG2 and CT26 cancer cell lines
M Shokrzadeh1, M Azadbakht2, N Ahangar1, A Hashemi3, SS Saeedi Saravi3
1 Department of Toxicology Pharmacology, Mazandaran University of Medical Sciences, Sari, Mazandaran Pharmaceutical Sciences Research Center, Iran 2 Department of Pharmacognosy, Mazandaran University of Medical Sciences, Sari, Mazandaran Pharmaceutical Sciences Research Center, Iran 3 Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Mazandaran Pharmaceutical Sciences Research Center, Iran
Date of Submission | 16-Feb-2010 |
Date of Decision | 11-Feb-2010 |
Date of Web Publication | 30-Jul-2010 |
Correspondence Address: M Shokrzadeh Department of Toxicology Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, 18th km of Khazarabad Road, Sari Iran
 Source of Support: Research of Mazandaran University of Medical Sciences, Sari, Iran, Conflict of Interest: None  | Check |
DOI: 10.4103/0973-1296.66931
Abstract | | |
Plants are used worldwide for the treatment of diseases, and novel drugs continue to be developed through research from plants. There are more than 20,000 species of plants used in traditional medicines, and these are all potential reservoirs for new drugs. Cucurbita pepo has been used in traditional folk medicine to treat cold and alleviate ache. Previous pharmacological tests have shown that it possesses antiviral, anti-inflammatory, and analgesic effects. Also, Solanum nigrum has been used as a diuretic and an antipyretic agent and it has also been used to cure inflammation, edema, mastitis and hepatic cancer. In this investigation, cytotoxicity of specific concentrations of hydro-alcoholic extracts of C. pepo and S. nigrum was studied on normal [Chinese hamster ovarian cells (CHO) and rat fibroblast] and cancer (HepG2 and CT26) cell lines. The cytotoxic effects and IC 50 of the extracts on the selected cell lines were studied followed by colonogenic assay method. The results showed that IC 50 of S. nigrum extract was significantly lower than that of the C. pepo extract on all four cell lines (P < 0.05). On the other hand, IC 50 of S. nigrum extract was significantly higher than the extract of Taxus baccata and Cisplatin, herbal and chemical control positive anticancer compounds, respectively, on all four cell lines (P < 0.05). As a result, it is concluded that the extract of S. nigrum has almost similar cytotoxicity to the extract of T. baccata on cancer cells. Keywords: Cell lines, colonogenic assay, Cucurbita pepo, cytotoxicity, Solanum nigrum
How to cite this article: Shokrzadeh M, Azadbakht M, Ahangar N, Hashemi A, Saeedi Saravi S S. Cytotoxicity of hydro-alcoholic extracts of Cucurbita pepo and Solanum nigrum on HepG2 and CT26 cancer cell lines. Phcog Mag 2010;6:176-9 |
How to cite this URL: Shokrzadeh M, Azadbakht M, Ahangar N, Hashemi A, Saeedi Saravi S S. Cytotoxicity of hydro-alcoholic extracts of Cucurbita pepo and Solanum nigrum on HepG2 and CT26 cancer cell lines. Phcog Mag [serial online] 2010 [cited 2021 Jan 28];6:176-9. Available from: http://www.phcog.com/text.asp?2010/6/23/176/66931 |
Introduction | |  |
Plants are used worldwide for the treatment of diseases, and novel drugs continue to be developed through research from plants. There are more than 20,000 species of plants used in traditional medicines, and these are all potential reservoirs for new drugs. [1] With the advance in modern medicine and drug research, chemical synthesis has replaced plants as the primary source of medicinal agents in industrialized countries. In developing countries, the majority of the world's population cannot afford pharmaceutical drugs and use their own plant-based indigenous medicines. Traditional medicinal plants have received considerable attention because their bioactive components may lead to new drug discoveries. [2],[3],[4],[5],[6],[7],[8],[9],[10]
Solanum nigrum Linn. (Solanaceae), commonly known as "Black nightshade," has been extensively used in traditional medicine in different parts of world to cure liver disorders, chronic skin ailments (psoriasis and ringworm), inflammatory conditions, painful periods, fevers, diarrhea, eye diseases, hydrophobia, seizure, etc. [11],[12],[13],[14] Also, the fruits are believed to have anti-tumor properties, although the mechanism for the activity remains to be elucidated.
Cucurbita pepo (Cucurbitaceae), commonly known as "pumpkin," distributed in different regions of world, has been employed in folk medicine to treat colds, alleviate aches, benign prostatic hypertrophy (BPH), etc. Previous pharmacological tests have shown that it possesses antibacterial, antiviral, anti-inflammatory and analgesic effects. [15],[16] Taxol is an intense anti-tumor compound extracted from the plants belonged to Taxus species, such as Taxus baccata. However, difficulty in obtaining this compound from yew trees has limited its clinical use. [17]
In this investigation, cytotoxic effects and IC 50 of specific concentrations of hydro-alcoholic extracts of fruits of S. nigrum and leaves of C. pepo were compared with hydro-alcoholic extract of bark of T. baccata and Cisplatin, well-known herbal and chemical anticancer compounds, respectively, on normal [Chinese hamster ovarian cells (CHO) and rat fibroblast] and cancer (HepG2 and CT26) cell lines.
Materials and Methods | |  |
Plant material
Leaves of C. pepo and bark of T. baccata were collected from the northern regions of Iran (Neka city in Mazandaran province) in August 2007. Also, fruits of S. nigrum were collected from downtown of Isfahan, Isfahan province. Botanical identification was confirmed by morphologic characteristics at Department of Pharmacognosy, Sari Faculty of Pharmacy.
Extraction and isolation
A measured quantity of 50 g of dried and powdered parts of each plant was chopped and soaked in 500 ml of ethanol (50% v/v) for 48 h and then percolated (10 drops/min). [18],[19] The hydro-alcoholic extracts (1:10) were separately concentrated over a rotary vacuum evaporator and specific concentrations of the hydro-alcoholic extracts (5, 25, 50, 100, 150 μg/ml) were prepared using phosphate buffer (pH = 7.4).
Cell lines
Normal CHO, normal rat fibroblast, HepG2 (human hepatocarcinoma) and CT26 (human colon carcinoma) cell lines were purchased from Pasture Institute of Iran in Tehran.
The completed media were sterilized by 0.22 μm microbiological filters and kept at 4°C before use.
Colonogenic assay
In colonogenic assay, 50 μl of DMEM/F12 including 500-700 cells was added to three wells of six well/plates for each concentration of the extracts and Cisplatin. Then, they were incubated for 48 h. After incubation, the cell lines were exposed to 50 μl of 0 (phosphate buffer), 5, 25, 50, 100, 150 μg/ml of hydro-alcoholic extracts of C. pepo , S. nigrum and T. baccata, and 50 μl of 0, 2.5, 5, 10, 25 μg/ml of Cisplatin for 2 h, and then washed using sterile normal saline 0.09%. Then, 4 ml fresh culture media was added to the wells and incubated for 7 days. After this period, the contents of wells were excluded; the cells were fixed with formalin 9%, and dyed with trypan blue 4% (w/v) for 20 min. Then, trypan blue was excluded, and the six well/plates were washed using sterile normal saline 0.09%. At the end, the dyed colonies were counted using a light microscope. [19],[20],[21]
Statistical analysis
Prism ver.3 Software was used to perform statistical tests. One way analysis of variance (ANOVA) followed by Tukey test were used to determine the differences among the groups (P < 0.05).
Results | |  |
The results showed that the extract of S. nigrum possesses lower IC 50 compared to that of the C. pepo extract on all four normal and cancer cell lines (P < 0.05). But IC 50 of the S. nigrum extract was significantly higher than that of the extract of T. baccata and Cisplatin on all four normal and cancer cell lines (P < 0.05) [Table 1]. The lower IC 50 represents the higher potency of a compound to inhibit the growth of cells and cause toxicity and death of cells.
Comparison of the evaluated IC 50 of the S. nigrum and C. pepo extracts with that of the T. baccata extract and Cisplatin on normal and cancer cell lines are shown in [Figure 1]. However, the lowest and highest IC 50 values were related to Cisplatin and hydro-alcoholic extract of C. pepo in all cell lines.
IC 50 of the compounds on the four cell lines increased in the following rank order: Cisplatin < T. baccata < S. nigrum < C. pepo. The IC 50 of Cisplatin on the four cell lines decreased in the following rank order of cells: CHO > fibroblast > CT26 > HepG2. Also, the IC 50 of hydro-alcoholic extract of T. baccata on the four cell lines decreased in the following rank order of cells: CHO > fibroblast > CT26 > HepG2.
On the other hand, the IC 50 of hydro-alcoholic extract of S. nigrum on the four cell lines increased in the following rank order of cells: fibroblast < CHO < CT26 < HepG2. As a result, the highest and lowest cytotoxicity of the S. nigrum extract was related to HepG2 (IC 50 = 56.4 ± 9.3 μg/ml) and CHO (IC 50 = 102.3 ± 6.1 μg/ml) cell lines.
The IC 50 of hydro-alcoholic extract of C. pepo on the four cell lines increased in the following rank order of cells: CHO < fibroblast < CT26 < HepG2. Also, the highest and lowest cytotoxicity of the C. pepo extract was related to HepG2 (IC 50 = 132.6 ± 4.3 μg/ml) and fibroblast (IC 50 = 293.2 ± 10.3 μg/ml) cell lines.
Discussion | |  |
For many years, plants have been used for treating different types of diseases in human beings. As per the World Health Organization (WHO) calculation, about 80% of the world's population presently uses medicinal herbal drugs for their primary health care. [22],[23] Cancer is one of the main health problems of the world's population. Current chemotherapeutic drugs are not useful in all cases and have severe side effects on human health. As a result, a search for other alternatives, preferably natural products, seems necessary and beneficial. This leaves an open door for new and better compounds. In continuation of our search for substances of plant origin with pharmacological effects, we have isolated and screened the plants S. nigrum and C. pepo for their cytotoxic activities.
According to the results, IC 50 of the S. nigrum and C. pepo extracts, and T. baccata extract and Cisplatin, as herbal and chemical control positive compounds, respectively, on normal cell lines were higher than that on cancer cell lines. This difference can result from dysfunction of cellular organisms following cancer incidence which causes higher rate of proliferation and increased cellular intake. Also, defensive disorders and effusion insufficiency to escape toxic substances from cells can lead to a lower necessity of the amounts of cytotoxic compounds to inhibit the growth of cancer cells, in comparison with normal cells. [19],[20],[21]
A study carried out by Patel et al., evaluated that methanolic extract of S. nigrum fruits has potential activity on HeLa cell and lesser effect on Vero cell. So, the drug has considerable anticancer activity on cervical cancer. [24] Wang et al. showed antitumor effects of methanolic extract of S. nigrum fruits on U266 cells. [25] During Wang et al.'s search for new anti-tumor agents, the ethanolic extract of fruits of C. pepo was observed to exhibit a significant dose-dependent inhibitory effect against HeLa cell growth. [26]
In our study, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay shows considerable activity of S. nigrum on HepG2 cell and little beat effect on CT26 cell. Also, the viability percents of the cells exposed to the extract of S. nigrum and similarity of IC 50 of this extract with the T. baccata extract, a common natural anticancer product, allows us to conclude that extracts of different parts of S. nigrum are good candidates for further studies of activity-monitored fractionation to identify their active components. Our results further support the idea that these medicinal plants can be promising sources of potential anticancer agents to treat or control a variety of cancers such as liver and colon cancers. In addition, the results of this study can form the basis on which the researchers can conduct cytotoxic studies on different cancer cells and find the mechanisms of cytotoxicity of the plants.
Acknowledgment | |  |
This study was supported by a grant from the Vice-chancellor of Research of Mazandaran University of Medical Sciences, Sari, Iran.
References | |  |
1. | Hamamouchi M. Medicinal plants in Morocco: Traditional use, marketing, and strategies for conservation and increasing value. Esperance Med 2002;9:454-8. |
2. | Huang CH, Kingston DG, Magri NF, Samaranayake G, Boettner FE. New taxanes from Taxus brevifolia. J Nat Prod 1986;49:665-9. [PUBMED] |
3. | Van Uden W, Homan B, Woerdenbag HJ, Pras N, Malingre TM, Wichers HJ, et al. Isolation, purification, and cytotoxicity of 5-methoxypodophyllotoxin, a lignan from a root culture of Linum flavum. J Nat Prod 1992;55:102-10. |
4. | Prasain JK, Stefanowicz P, Kiyota T, Habeichi F, Konishi Y. Taxines from the needles of Taxus wallichiana. Phytochem 2001;58:1167-70. |
5. | Dehkordi AJ, Emami SA, Saeidi M, Sadeghi H. Cytotoxicologic Studies of the Extracts of Iranian Juniperus Sabina and Platycladus orientalis on Cancer Cells. J Res Med Sci 2004;5:205-9. |
6. | Kim JS. Compositions for inducing secretion of insulin-like growth factor-1. US6984405; 2006. |
7. | Limem-Ben Amor I, Boubaker J, Ben Sgaier M, Skandrani I, Bhouri W, Neffati A, et al. Phytochemistry and biological activities of Phlomis species. J Ethnopharmacol 2009;125:183-202. [PUBMED] [FULLTEXT] |
8. | Ebrahimzadeh MA, Mahmoudi M, Karami M, Saeedi Saravi SS, Ahmadi AH, Salimi E. Separation of active and toxic portions in Sambucus ebulus. Pakistan J Biol Sci 2007;10:4171-3. |
9. | Saeedi Saravi SS, Shokrzadeh M. The chemistry, pharmacology and clinical properties of Sambucus ebulus: A review. J Med Plant Res 2010;4:95-103. |
10. | Saeedi Saravi SS, Shokrzadeh M. Histopathological and Biochemical Disorders Following Administration of Sambucus ebulus Extract on Mice and Rats and Preventive Effects of Vitamins C and E on Renal and Hepatic Disorders. Phcog Mag 2008;5:131-5. |
11. | Kritikar KR, Basu BD. Indian Medicinal Plants. 2 nd ed., vol 2. Allahabad, Lalit Mohan Basu Publications; 1935. p. 457-8. |
12. | Jainu M, Shyamala Devi CS. Antiulcerogenic and ulcer healing effects of Solanum nigrum (L.) on experimental ulcer models: Possible mechanism for the inhibition of acid formation. J Ethnopharmacol 2006;104:156-63. |
13. | Lin HM, Tseng HC, Wang CJ, Lin JJ, Lo CW, Chou FP. Hepatoprotective effects of Solanum nigrum Linn extract against CCl4- induced oxidative damage in rats. Chem Biol Interact 2008;171:283-93. [PUBMED] [FULLTEXT] |
14. | Wannang NN, Anuka JJ, Kwanashie HO, Gyang SS, Auta A. Anti-seizure activity of the aqueous leaf extract of Solanum nigrum linn (solanaceae) in experimental animals. African Health Sci 2008;8:74-9. |
15. | Wang DA, Pan HU, Deng XM, Xiang H, Gao HY, Cai H, et al. Cucurbitane and hexanorcucurbitane glycosides from the fruits of Cucurbita pepo cv dayangua. J Asian Nat Product Res 2007;9:525-9. |
16. | Hegi G. Illustrierte Flora von Mitteleuropa. Band 6, Teil 2. Berlin: Parey Verlag; 1979; p. A29-36. |
17. | Bonfill M, Expσsito O, Onrubia M, Janι A, Cusidσ RM, Palazσn J. Effect of external factors on the production of taxol and other taxanes in cell cultures of Taxus baccata. J Biotechnol 2007;131:S45. |
18. | Prasad SB, A. Giri. Antitumor effect of Cisplatin against murine ascites Dalton's lymphoma. Indian J Exp Biol 1994;32:57-62. |
19. | Shokrzadeh M, Azadbakht M, Ahangar N, Naderi H, Saeedi Saravi SS. Comparison of Cytotoxic Effects of Juniperus sabina and Zataria multiflora Extracts With Taxus baccata Extract and Cisplatin on Normal and Cancer Cell Lines. Phcog Mag 2010; 6: 102-5. |
20. | Shokrzadeh M, Saeedi Saravi SS, Mirzayi M. Cytotoxic Effects of Ethyl Acetate Extract of Sambucus ebulus Compared With Etoposide on Normal and Cancer Cell Lines. Phcog Mag 2009b;5:316-9. |
21. | Shokrzadeh M, Azadbakht M, Ahangar N, Naderi H, Saeedi Saravi SS. Cytotoxic effects of hydroalcoholic extract of Juniperus sabina compared with hydroalcoholic extract of Taxus baccata and Cisplatin on normal and cancer cell lines. Planta Med 2009c;75:986-7. |
22. | WHO. Diet, Nutrition and the Prevention of Chronic Diseases. Geneva: World Health Organization, Technical Report Series, 916; 2003. |
23. | Etkin NL, Hausa A. Herbal Pharmacopoeia: Biomedical Evaluation of Commonly used Plant Medicines. J Ethnopharmacol 1981;4:75-98. |
24. | Patel S, Gheewala N, Suthar A, Shah A. In-vitro cytotoxicity activity of Solanum nigrum extract against Hela cell line and Vero cell line.Int J Pharm Pharmaceut Sci2009;1:38-46. |
25. | Wang W, Lu DP. An in vitro study of cytotoxic and antineoplastic effect of Solanum nigrum L extract on U266. Beijing Da Xue Xue Bao 2005;37:240-4. [PUBMED] |
26. | Wang DC, Pan HY, Deng XM, Xiang H, Gao HY, Cai H, et al. Cucurbitane and hexanorcucurbitane glycosides from the fruits of Cucurbita pepo cv dayangua. J Asian Nat Pro Res 2007;9:525-9. |
[Figure 1]
[Table 1]
This article has been cited by | 1 |
Cisplatin-, Doxorubicin-, and Docetaxel-Induced Cell Death Promoted by the Aqueous Extract of Solanum nigrum in Human Ovarian Carcinoma Cells |
|
| Chia-Woei Wang,Chun-Liang Chen,Chien-Kai Wang,Yu-Jia Chang,Jiun-Yu Jian,Chi-Shian Lin,Cheng-Jeng Tai,Chen-Jei Tai | | Integrative Cancer Therapies. 2015; 14(6): 546 | | [Pubmed] | [DOI] | | 2 |
Diversity of natural pigments and phytochemical compounds from exocarp and mesocarp of 27 Cucurbita pepo accessions |
|
| María Teresa Blanco-Díaz,Rafael Font,Damián Martínez-Valdivieso,Mercedes Del Río-Celestino | | Scientia Horticulturae. 2015; 197: 357 | | [Pubmed] | [DOI] | | 3 |
Evaluation Of Potential Cytotoxic Effects Of Herbal Extracts |
|
| Ana Radovanovic | | Serbian Journal of Experimental and Clinical Research. 2015; 16(4) | | [Pubmed] | [DOI] | | 4 |
Antioxidant and Proapoptotic Activities ofSclerocarya birrea[(A. Rich.) Hochst.] Methanolic Root Extract on the Hepatocellular Carcinoma Cell Line HepG2 |
|
| Maria Francesca Armentano,Faustino Bisaccia,Rocchina Miglionico,Daniela Russo,Nicoletta Nolfi,Monica Carmosino,Paula B. Andrade,Patrícia Valentão,Moussoukhoye Sissokho Diop,Luigi Milella | | BioMed Research International. 2015; 2015: 1 | | [Pubmed] | [DOI] | | 5 |
Application of near-infrared reflectance spectroscopy for predicting carotenoid content in summer squash fruit |
|
| Damián Martínez-Valdivieso,Rafael Font,María Teresa Blanco-Díaz,José Manuel Moreno-Rojas,Pedro Gómez,Ángeles Alonso-Moraga,Mercedes Del Río-Celestino | | Computers and Electronics in Agriculture. 2014; 108: 71 | | [Pubmed] | [DOI] | | 6 |
Use of visible and near-infrared spectroscopy for predicting antioxidant compounds in summer squash (Cucurbita pepo ssp pepo) |
|
| María Teresa Blanco-Díaz,Mercedes Del Río-Celestino,Damián Martínez-Valdivieso,Rafael Font | | Food Chemistry. 2014; | | [Pubmed] | [DOI] | | 7 |
Isolation and Identification of a Novel Anticancer Compound from Solanum nigrum |
|
| Hee Jung Yun,Jong Hun Jung,Sook Kyung Hyun,Byung Woo Kim,Hyun Ju Kwon | | Journal of Life Science. 2014; 24(3): 234 | | [Pubmed] | [DOI] | | 8 |
Profiling of phenolic and other polar compounds in zucchini (Cucurbita pepo L.) by reverse-phase high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry |
|
| Ihsan Iswaldi,Ana María Gómez-Caravaca,Jesús Lozano-Sánchez,David Arráez-Román,Antonio Segura-Carretero,Alberto Fernández-Gutiérrez | | Food Research International. 2013; 50(1): 77 | | [Pubmed] | [DOI] | | 9 |
Aqueous Extract of Solanum nigrum Leaves Induces Autophagy and Enhances Cytotoxicity of Cisplatin, Doxorubicin, Docetaxel, and 5-Fluorouracil in Human Colorectal Carcinoma Cells |
|
| Chen-Jei Tai,Chien-Kai Wang,Cheng-Jeng Tai,Yi-Feng Lin,Chi-Shian Lin,Jiun-Yu Jian,Yu-Jia Chang,Chun-Chao Chang | | Evidence-Based Complementary and Alternative Medicine. 2013; 2013: 1 | | [Pubmed] | [DOI] | | 10 |
Aqueous extract of solanum nigrum leaves induces autophagy and enhances cytotoxicity of cisplatin, doxorubicin, docetaxel, and 5-fluorouracil in human colorectal carcinoma cells |
|
| Tai, C.-J. and Wang, C.-K. and Tai, C.-J. and Lin, Y.-F. and Lin, C.-S. and Jian, J.-Y. and Chang, Y.-J. and Chang, C.-C. | | Evidence-based Complementary and Alternative Medicine. 2013; 2013(514719) | | [Pubmed] | | 11 |
Profiling of phenolic and other polar compounds in zucchini (Cucurbita pepo L.) by reverse-phase high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry |
|
| Iswaldi, I. and Gómez-Caravaca, A.M. and Lozano-Sánchez, J. and Arráez-Román, D. and Segura-Carretero, A. and Fernández-Gutiérrez, A. | | Food Research International. 2013; 50(1): 77-84 | | [Pubmed] | | 12 |
Aqueous extract of Solanum nigrum leaf activates autophagic cell death and enhances docetaxel-induced cytotoxicity in human endometrial carcinoma cells |
|
| Tai, C.-J. and Wang, C.-K. and Chang, Y.-J. and Lin, C.-S. and Tai, C.-J. | | Evidence-based Complementary and Alternative Medicine. 2012; 2012(859185) | | [Pubmed] | | 13 |
Althaea rosea Cavanil and Plantago major L. suppress neoplastic cell transformation through the inhibition of epidermal growth factor receptor kinase |
|
| Choi, E.-S. and Cho, S.-D. and Shin, J.-A. and Kwon, K.H. and Cho, N.-P. and Shim, J.-H. | | Molecular Medicine Reports. 2012; 6(4): 843-847 | | [Pubmed] | | 14 |
Antihistaminic and antiallergic actions of extracts of Solanum nigrum berries: Possible role in the treatment of asthma |
|
| Nirmal, S.A. and Patel, A.P. and Bhawar, S.B. and Pattan, S.R. | | Journal of Ethnopharmacology. 2012; 142(1): 91-97 | | [Pubmed] | | 15 |
Aqueous Extract of Solanum nigrum Leaf Activates Autophagic Cell Death and Enhances Docetaxel-Induced Cytotoxicity in Human Endometrial Carcinoma Cells |
|
| Cheng-Jeng Tai,Chien-Kai Wang,Yu-Jia Chang,Chi-Shian Lin,Chen-Jei Tai | | Evidence-Based Complementary and Alternative Medicine. 2012; 2012: 1 | | [Pubmed] | [DOI] | | 16 |
Antihistaminic and antiallergic actions of extracts of Solanum nigrum berries: Possible role in the treatment of asthma |
|
| S.A. Nirmal,A.P. Patel,S.B. Bhawar,S.R. Pattan | | Journal of Ethnopharmacology. 2012; 142(1): 91 | | [Pubmed] | [DOI] | | 17 |
Therapeutic plants of ayurveda; a review on anticancer |
|
| Kumar, S. and Jawaid, T. and Dubey, S.D. | | Pharmacognosy Journal. 2011; 3(23): 1-11 | | [Pubmed] | | 18 |
Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae) |
|
| Blanca, J. and Cañizares, J. and Roig, C. and Ziarsolo, P. and Nuez, F. and Picó, B. | | BMC Genomics. 2011; 12(104) | | [Pubmed] | | 19 |
Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae) |
|
| José Blanca,Joaquín Cañizares,Cristina Roig,Pello Ziarsolo,Fernando Nuez,Belén Picó | | BMC Genomics. 2011; 12(1): 104 | | [Pubmed] | [DOI] | | 20 |
Amplified fragment length polymorphisms (AFLPs) analysis of species of solanum section Solanum (Solanaceae) from Uganda |
|
| Olet, E.A., Lye, K.A., Heun, M. | | African Journal of Biotechnology. 2011; 10(34): 6387-6395 | | [Pubmed] | |
|
 |
 |
|