Close
  Indian J Med Microbiol
 

Figure 3: Effect of (-)-epigallocatechin gallate on uric acid-induced expression of inflammatory cytokines and chemokines in human umbilical vein endothelial cells. Human umbilical vein endothelial cells were pretreated with 0–50 μM (-)-epigallocatechin gallate for 12 h followed by treatment with 8mg mg/dl uric acid for 24 h. (a) Nuclear factor-kappa B. Glyceraldehyde phosphate dehydrogenase was used as an internal cytosolic marker control. (b) Monocyte chemotactic protein-1. (c) Intercellular adhesion molecule-1. (d) Relative levels of cycloxygenase-2 are shown. (e) Tumor necrosis factor-α. (f) Induced nitric oxide synthetase. (g) Endothelin-1. (h) The levels of von Willebrand factor (**P < 0.01 vs. control, #P < 0.05 vs. uric acid alone, ##P < 0.01 vs. uric acid alone)

Figure 3: Effect of (-)-epigallocatechin gallate on uric acid-induced expression of inflammatory cytokines and chemokines in human umbilical vein endothelial cells. Human umbilical vein endothelial cells were pretreated with 0–50 μM (-)-epigallocatechin gallate for 12 h followed by treatment with 8mg mg/dl uric acid for 24 h. (a) Nuclear factor-kappa B. Glyceraldehyde phosphate dehydrogenase was used as an internal cytosolic marker control. (b) Monocyte chemotactic protein-1. (c) Intercellular adhesion molecule-1. (d) Relative levels of cycloxygenase-2 are shown. (e) Tumor necrosis factor-α. (f) Induced nitric oxide synthetase. (g) Endothelin-1. (h) The levels of von Willebrand factor (**<i>P</i> < 0.01 vs. control, <sup>#</sup><i>P</i> < 0.05 vs. uric acid alone, <sup>##</sup><i>P</i> < 0.01 vs. uric acid alone)