Close
  Indian J Med Microbiol
 

Figure 3: (a-e) Effect of Moringa oleifera 90% hydroethanolic bioactive leaves extract on the production of tumor necrosis factor alpha, interleukin-1β, interleukin-6, prostaglandin E2, and interleukin-10 cytokines in lipopolysaccharide-stimulated RAW 264.7 cells. Cells have been exposed with lipopolysaccharide (1 µg/ml) alone or lipopolysaccharide plus different concentrations of Moringa oleifera (125 µg/ml, 250 µg/ml) and dexamethasone for 24 h. Three independent assays were performed in triplicate, and the data are shown the mean ± standard deviation statistical analysis using one-way analysis of variance with Tukey's post-hoc test. It shows a significant difference with lipopolysaccharide treated and untreated groups (*P < 0.001). It exhibits significant difference with lipopolysaccharide treated group (**P < 0.001). It shows a significant difference with lipopolysaccharide treated group (#P < 0.05)

Figure 3: (a-e) Effect of <i>Moringa oleifera</i> 90% hydroethanolic bioactive leaves extract on the production of tumor necrosis factor alpha, interleukin-1β, interleukin-6, prostaglandin E2, and interleukin-10 cytokines in lipopolysaccharide-stimulated RAW 264.7 cells. Cells have been exposed with lipopolysaccharide (1 µg/ml) alone or lipopolysaccharide plus different concentrations of <i>Moringa oleifera</i> (125 µg/ml, 250 µg/ml) and dexamethasone for 24 h. Three independent assays were performed in triplicate, and the data are shown the mean ± standard deviation statistical analysis using one-way analysis of variance with Tukey's <i>post-hoc</i> test. It shows a significant difference with lipopolysaccharide treated and untreated groups (*<i>P</i> < 0.001). It exhibits significant difference with lipopolysaccharide treated group (**<i>P</i> < 0.001). It shows a significant difference with lipopolysaccharide treated group (#<i>P</i> < 0.05)