Close
  Indian J Med Microbiol
 

Figure 2: Scheme represents glutathione homeostasis. The reduced glutathione and oxidized glutathione forms of glutathione work in coordination with other redox-cycles (e.g. nicotinamide adenosine dinucleotide phosphate) to maintain and regulate cellular redox balance. Glutathione reductase reduces glutathione disulfide to sulfhydryl form (glutathione) by nicotinamide adenosine dinucleotide phosphate-dependent mechanism. Nicotinamide adenosine dinucleotide phosphate is primarily available via pentose phosphate pathway involved in glucose oxidation. Glutathione acts directly as antioxidant and also as cofactor for various enzymes such as glutathione–S-transferase responsible for protection against various genotoxic and carcinogenic compounds, glutathione peroxidase accountable for reduction of various peroxides (LOOH, H2O2) and glyoxalases involved in elimination of advanced glycation end-products). An imbalance in the activities of antioxidant enzymes such as glutathione reductase, glutathione peroxidase, glutathione–S-transferase), glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase may affect cellular defense system. NADP +: Nicotinamide adenine dinucleotide, LOOH: Lipid peroxides

Figure 2: Scheme represents glutathione homeostasis. The reduced glutathione and oxidized glutathione forms of glutathione work in coordination with other redox-cycles (e.g. nicotinamide adenosine dinucleotide phosphate) to maintain and regulate cellular redox balance. Glutathione reductase reduces glutathione disulfide to sulfhydryl form (glutathione) by nicotinamide adenosine dinucleotide phosphate-dependent mechanism. Nicotinamide adenosine dinucleotide phosphate is primarily available via pentose phosphate pathway involved in glucose oxidation. Glutathione acts directly as antioxidant and also as cofactor for various enzymes such as glutathione–S-transferase responsible for protection against various genotoxic and carcinogenic compounds, glutathione peroxidase accountable for reduction of various peroxides (LOOH, H<sub>2</sub>O<sub>2</sub>) and glyoxalases involved in elimination of advanced glycation end-products). An imbalance in the activities of antioxidant enzymes such as glutathione reductase, glutathione peroxidase, glutathione–S-transferase), glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase may affect cellular defense system. NADP <sup>+</sup>: Nicotinamide adenine dinucleotide, LOOH: Lipid peroxides