Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2019  |  Volume : 15  |  Issue : 66  |  Page : 377--385

Selection of suitable reference genes for reverse transcription-quantitative polymerase chain reaction normalization in Artemisia annua L. plants at different stages of growth and development


Javed Ahmad1, Nazima Nasrullah1, Naved Quadri1, Umara Nissar1, Shashi Kumar2, Malik Zainul Abdin1 
1 Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
2 International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Correspondence Address:
Malik Zainul Abdin
Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi - 110 062
India

Background: Artemisinin, an antimalarial compound suggested by the WHO to treat drug-resistant malaria, was obtained from Artemisia annua L. plants. However, due to the low level of artemisinin in the plant causes limitation to its commercialization, so to increase the concentration of artemisinin, two transgenic lines were developed by us, overexpressing the key genes of artemisinin biosynthetic pathway, namely, 3 S-hydroxy-3-methyl glutaryl-CoA reductase (HMGR), amorpha-4,11-diene synthase (ADS) (Trans. 1) and HMGR, ADS, and CYP71AV1 (cytochrome P450 monooxygenase) (Trans. 2). Objectives: Our main aim for this study was to select the suitable reference gene for the normalization of reverse transcription-quantitative polymerase chain reaction ( Reverse transcription RT-qPCR) data in different tissues at various developmental stages in A. annua L. plants. Materials and Methods: Six candidate reference genes, namely; β-actin (ACT), elongation factor 1-alpha (EF1α), TAP-42 interacting protein (TAP42), SAND family protein, β-tubulin, and protein phosphatase 2A (PP2A) for their expression stability in the root, stem, leaf, and flower of A. annua L. plants at vegetative, preflowering, and flowering stages were analyzed using geNorm, NormFinder and BestKeeper, the Excel-based research tools. Results: The genes ACT/PP2A, PP2A/TAP42, and EF1α/PP2A were appropriate as reference genes in the leaf tissues at vegetative, preflowering, and flowering stages, respectively. In addition, EF1α/PP2A genes at vegetative and flowering stage, while EF1α/TAP42 gene at preflowering stage was found suitable reference genes for normalization of expression data in the stem. In the root samples, ACT/EF1α, EF1α/PP2A, and ACT/TAP42 sets were found to be reliable reference genes at vegetative, preflowering, and flowering stages, respectively, whereas, PP2A/TAP42 gene set was found suitable for flower tissues at flowering stage. Conclusion: These results will be helpful in the normalization of expression data in RT-qPCR to find the reliable outcome.


How to cite this article:
Ahmad J, Nasrullah N, Quadri N, Nissar U, Kumar S, Abdin MZ. Selection of suitable reference genes for reverse transcription-quantitative polymerase chain reaction normalization in Artemisia annua L. plants at different stages of growth and development.Phcog Mag 2019;15:377-385


How to cite this URL:
Ahmad J, Nasrullah N, Quadri N, Nissar U, Kumar S, Abdin MZ. Selection of suitable reference genes for reverse transcription-quantitative polymerase chain reaction normalization in Artemisia annua L. plants at different stages of growth and development. Phcog Mag [serial online] 2019 [cited 2019 Dec 7 ];15:377-385
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2019;volume=15;issue=66;spage=377;epage=385;aulast=Ahmad;type=0