Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2019  |  Volume : 15  |  Issue : 65  |  Page : 586--591

Anti-eczematic and molecular modeling of anthraquinones isolated from the seeds of Asphodelus microcarpus salzm. viv. growing in Egypt


Abd El-Salam I.Mohammed1, Arafa Musa2, Marwa S Abu-Bakr3, Hatem S Abbass1 
1 Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
2 Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt; Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
3 Department of Pharmacognosy, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt

Correspondence Address:
Arafa Musa
Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo

Background: Eczema or atopic dermatitis is a widely spread skin disorder; the topical application of corticosteroids is the first choice for treatment. Natural products have a great contribution in the treatment of this disease; Asphodelus microcarpus seeds are rich in anthraquinones and known to possess both anti-inflammatory and antidermatitis effects. Objective: The objective of the study is to investigate the anti-eczematic activity, acute toxicity, and molecular modeling of A. microcarpus seeds. Materials and Methods: Nuclear magnetic resonance, ultraviolet, and mass spectroscopy were applied for characterization of isolated metabolites; induction of eczema was conducted by 2% and 0.2% w/v dinitrochlorobenzene in acetone; eczema was treated with topical application of the different seed extracts in the form of ointments (1% w/w); Swiss albino mice (25–30 g) were used for the determination of LD50and anti-eczematic effect. Docking studies were performed by Molecular Operating Environment software. Results: A. microcarpus seed extract exhibited promising ant-eczematic activity, six anthraquinones were isolated from chloroform portion and characterized as 10,7'-bichrysophanol (1), asphodelin (2), chrysophanol-8-O-methyl ether (3), chrysophanol (4), physcion (5), and emodin (6). Compounds 1, 3, and 5 exerted significant anti-eczematic effect. Conclusion: Six known anthraquinone derivatives were isolated and characterized for the first time from the seeds of A. microcarpus. Chloroform fraction (1% w/w) showed significant anti-eczematic effect compared to standard mometasone furoate (0.1 w/w). The docking study proved the anti-eczematic activity of anthraquinone content by their affinity to the target human histamine H1receptor.


How to cite this article:
I.Mohammed AE, Musa A, Abu-Bakr MS, Abbass HS. Anti-eczematic and molecular modeling of anthraquinones isolated from the seeds of Asphodelus microcarpus salzm. viv. growing in Egypt.Phcog Mag 2019;15:586-591


How to cite this URL:
I.Mohammed AE, Musa A, Abu-Bakr MS, Abbass HS. Anti-eczematic and molecular modeling of anthraquinones isolated from the seeds of Asphodelus microcarpus salzm. viv. growing in Egypt. Phcog Mag [serial online] 2019 [cited 2020 Sep 22 ];15:586-591
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2019;volume=15;issue=65;spage=586;epage=591;aulast=I.Mohammed;type=0