Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2019  |  Volume : 15  |  Issue : 61  |  Page : 177--182

Quality assessment of pollen typhae by high-performance liquid chromatography fingerprint, hierarchical cluster analysis, and principal component analysis


Xin Ma1, Haimiao Zou2, Yibin Pan3, Jing Su1, Yujiao Qiu4, Mingfeng Qiu1 
1 Research Center of Traditional Dai Medicine, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
2 Deparment of Pharmacy, Qilu Meical University, Zibo, China
3 Department of Anorectal, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
4 Solebury School, New Hope, PA, USA

Correspondence Address:
Mingfeng Qiu
School of Pharmacy, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai 200240
China

Aim: This study aims to establish the quality assessment methods of Pollen Typhae. Materials and Methods: High performance liquid chromatography (HPLC) fingerprint analysis, hierarchical cluster analysis (HCA), and principal component analysis (PCA) were used for quality evaluation of Pollen Typhae from different origins together with microscopic identification. Then, the quantity of 43 crude Pollen Typhae samples in the market was collected and analyzed. Results: In true and false test, four False Pollen Typhae samples, 13 Net Pollen Typhae (NPT) samples, and 26 Grass Pollen Typhae (GPT) samples were identified by microscopic identification. In quality test, the amounts and percentages of Qualified Pollen Typhae, Unqualified Pollen Typhae were 24 (55.81%) and 19 (44.19%), respectively with typhaneoside and isorhamnetin-3-O-neohesperidoside determined by HPLC according to China Pharmacopeia. We analyzed 43 samples from 20 regions and established their fingerprints, then selected 31 peaks as characteristic peaks and calculated their relative peak areas. To express the HPLC fingerprints quantitatively, peak 16, 18, 22, 23, and 26 were verified as typhaneoside, isorhamnetin-3-O-neoheptanoside, rutin, quercetin, and isorhamnetin. The similarity of correlation coefficients in chromatogram was 0.954 ± 0.007 and 0.922 ± 0.004 for NPT and GPT, respectively, while 0.67 ± 0.008 for 43 samples. The analysis of HCA and PCA can distinguish true or false, qualified or unqualified of Pollen Typhae. Conclusion: HPLC fingerprint combined with HCA and PCA provides a very efficient and comprehensive method for quality evaluation of Pollen Typhae. Abbreviations used: HCA: Hierarchical cluster analysis; PCA: Principal component analysis; FPT: False Pollen Typhae; NPT: Net Pollen Typhae; GPT: Grass Pollen Typhae; QPT: Qualified Pollen Typhae; UPT: Unqualified Pollen Typhae; RSDs: The relative standard deviations; CASE: Computer Aided Similarity Evaluation; TCM: Traditional Chinese medicine.


How to cite this article:
Ma X, Zou H, Pan Y, Su J, Qiu Y, Qiu M. Quality assessment of pollen typhae by high-performance liquid chromatography fingerprint, hierarchical cluster analysis, and principal component analysis.Phcog Mag 2019;15:177-182


How to cite this URL:
Ma X, Zou H, Pan Y, Su J, Qiu Y, Qiu M. Quality assessment of pollen typhae by high-performance liquid chromatography fingerprint, hierarchical cluster analysis, and principal component analysis. Phcog Mag [serial online] 2019 [cited 2019 May 26 ];15:177-182
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2019;volume=15;issue=61;spage=177;epage=182;aulast=Ma;type=0