Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2018  |  Volume : 14  |  Issue : 55  |  Page : 192--196

A therapeutic approach to target mitochondrial dysfunction using molecular docking studies: Screening of natural drugs for oral carcinoma


Manish Singh1, Manish Kumar Tripathi2, Alok Kumar Singh3, Chandra Shekhar Azad3, Indrajeet Singh Gambhir3, Brijesh Kumar1, Suresh Purohit1 
1 Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
2 Department of Biological Sciences and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
3 Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Correspondence Address:
Alok Kumar Singh
Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221 005, Uttar Pradesh
India

Background: Mitochondrial dysfunction is the major cause of various types of cancer, leading to death worldwide. The present study investigated the in silico binding potential of natural flavonoids and essential oils with human cyclophilin D (CyPD) protein. CyPD protein is a major molecular marker for apoptosis and has been reported to be elevated in oral carcinoma. Methods: PubChem database was used to check the efficacy of different active phytoconstituents (kaempferol, quercetin, eugenol, oxyresveratrol, tanshinone 2a, catechin, epicatechin, cinnamaldehyde, and emodin). These compounds were used as ligands to check their potential as anticancer agents against the inner mitochondrial membrane protein, CyPD. Docking studies were performed with the help of Discovery Studio 2.5 and Autodock. Emodin was used as a reference inhibitor to compare the results. Results: The binding energy (B.E.) of the reference inhibitor (known/established drug) emodin was observed −28.9 kcal/mol while novel inhibitors (catechin, cinnamaldehyde, epicatechin, eugenol, kaempferol, oxyresveratrol, quercetin, and tanshinone 2a) exhibited a range from −51.51 to −5.89 kcal/mol. Quercetin, kaempferol, and epicatechin (B.E.: −51.51, −34.79, and −30.62 kcal/mol, respectively) showed strong affinity as compared to reference inhibitor (B.E.: −28.9 kcal/mol). Conclusion: Quercetin, kaempferol, and epicatechin can be used as lead inhibitors against targeting CyPD. Abbreviations used: CyPD: Cyclophilin D, BE: Binding Energy, PTPC: Permeability transition pore complex, mPTP: Mitochondrial permeability transition pore.


How to cite this article:
Singh M, Tripathi MK, Singh AK, Azad CS, Gambhir IS, Kumar B, Purohit S. A therapeutic approach to target mitochondrial dysfunction using molecular docking studies: Screening of natural drugs for oral carcinoma.Phcog Mag 2018;14:192-196


How to cite this URL:
Singh M, Tripathi MK, Singh AK, Azad CS, Gambhir IS, Kumar B, Purohit S. A therapeutic approach to target mitochondrial dysfunction using molecular docking studies: Screening of natural drugs for oral carcinoma. Phcog Mag [serial online] 2018 [cited 2019 Dec 11 ];14:192-196
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2018;volume=14;issue=55;spage=192;epage=196;aulast=Singh;type=0