Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2014  |  Volume : 10  |  Issue : 38  |  Page : 311--317

An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO 3 and poloxamer 188


Hong-mei Yan1, Zhen-hai Zhang2, Yan-rong Jiang4, Dong-mei Ding4, E. Sun4, Xiao-bin Jia2 
1 Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
2 Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, China

Correspondence Address:
Xiao-bin Jia
Key laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Road, Nanjing, Jiangsu 210028
China

Background: Tanshinone IIA (TSIIA) on solid dispersions (SDs) has thermodynamical instability of amorphous drug. Ternary solid dispersions (tSDs) can extend the stability of the amorphous form of drug. Poloxamer 188 was used as a SD carrier. Nano-CaCO 3 played an important role in adsorption of biomolecules and is being developed for a host of biotechnological applications. Objective: The aim of the present study was to investigate the dissolution behavior and accelerated stability of TSIIA on solid dispersions (SDs) by the use of ternary systems with nano-CaCO 3 and poloxamer 188. Materials and Methods: The TSIIA tSDs were prepared by a spray-drying method. First, the effect of combination of poloxamer 188 and nano-CaCO 3 on TSIIA dissolution was studied. Subsequently, a set of complementary techniques (DSC, XRPD, SEM and FTIR) was used to monitor the physical changes of TSIIA in the SDs. Finally, stability test was carried out under the conditions 40°C/75% RH for 6 months. Results: The characterization of tSDs by differential scanning calorimetry analysis (DSC) and X-ray powder diffraction (XRPD) showed that TSIIA was present in its amorphous form. Fourier transforms infrared spectroscopy (FTIR) suggested the presence of interactions between TSIIA and carriers in tSDs. Improvement in the dissolution rate was observed for all SDs. The stability study conducted on SDs with nano-CaCO 3 showed stable drug content and dissolution behavior, over the period of 6 months as compared with freshly prepared SDs. Conclusion: SDs preparation with nano-CaCO 3 and poloxamer 188 may be a promising approach to enhance the dissolution and stability of TSIIA.


How to cite this article:
Yan Hm, Zhang Zh, Jiang Yr, Ding Dm, Sun E, Jia Xb. An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO 3 and poloxamer 188.Phcog Mag 2014;10:311-317


How to cite this URL:
Yan Hm, Zhang Zh, Jiang Yr, Ding Dm, Sun E, Jia Xb. An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO 3 and poloxamer 188. Phcog Mag [serial online] 2014 [cited 2020 Feb 19 ];10:311-317
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2014;volume=10;issue=38;spage=311;epage=317;aulast=Yan;type=0