Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2014  |  Volume : 10  |  Issue : 38  |  Page : 111--117

ACE and platelet aggregation inhibitors from Tamarix hohenackeri Bunge (host plant of Herba Cistanches) growing in Xinjiang


Yachao Xing1, Jing Liao2, Yingzhan Tang1, Peng Zhang3, Chengyu Tan4, Hui Ni2, Xueqin Wu3, Ning Li1, Xiaoguang Jia2 
1 School of Traditional Chinese Materia Medica, Key Laboratory of Structure Based Drug Design and Discovery of Ministry of Education Shenyang Pharmaceutical University, Shenyang, China
2 XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
3 Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
4 Marine Environmental Engineering College, Dalian Ocean University, Dalian, China

Correspondence Address:
Ning Li
School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang - 110016
China

Background: Tamarix hohenackeri Bunge is a salt cedar that grows widespread in the desert mountains in Xinjiang. T. hohenackeri has not been investigated earlier, although there are many reports of phytochemical work on other Tamarix species. Materials and Methods: To find out natural angiotensin-converting enzyme (ACE) inhibitor and platelet aggregation inhibitors, the bioactive extract (ethyl acetate [EtOAc] fraction) from the dried aerial parts of T. hohenackeri were investigated. The active fraction was purified by repeated column chromatography, including silica gel, Sephadex LH-20 column, medium-pressure liquid chromatography (MPLC) (polyamide column) and high-performance liquid chromatography (HPLC). The isolated major constituents were tested for their anti-platelet aggregation activity. Results: Bioassay-directed separation of the EtOAc fraction of the 70% ethanol extract from the air-dried aerial parts of T. hohenackeri led to the isolation of a new triterpenoid lactone (1), together with 13 known compounds (2-14). It was the first time to focus on screening bioactive constituents for this plant. The chemical structures were established on the basis of spectral data (ESI-MS and NMR). The results showed that the flavonoid compounds (7 and 8) and phenolic compounds (9, 10, 11, and 14) were potential ACE inhibitors. And the flavonoid compounds (5 and 7) showed significant anti-platelet aggregation activities. Conclusion: On the basis of the chemical and biological data, the material basis of ACE inhibitory activity for the active part was the phenolic constituents. However, the flavonoid compounds were responsible for the anti-platelet aggregation. The primary structure and activity relationship were also discussed respectively.


How to cite this article:
Xing Y, Liao J, Tang Y, Zhang P, Tan C, Ni H, Wu X, Li N, Jia X. ACE and platelet aggregation inhibitors from Tamarix hohenackeri Bunge (host plant of Herba Cistanches) growing in Xinjiang.Phcog Mag 2014;10:111-117


How to cite this URL:
Xing Y, Liao J, Tang Y, Zhang P, Tan C, Ni H, Wu X, Li N, Jia X. ACE and platelet aggregation inhibitors from Tamarix hohenackeri Bunge (host plant of Herba Cistanches) growing in Xinjiang. Phcog Mag [serial online] 2014 [cited 2019 Aug 18 ];10:111-117
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2014;volume=10;issue=38;spage=111;epage=117;aulast=Xing;type=0