Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2012  |  Volume : 8  |  Issue : 30  |  Page : 129--134

Biodistribution properties of cleistanthin A and cleistanthin B using magnetic resonance imaging in a normal and tumoric animal model


Subramani Parasuraman1, Ramasamy Raveendran1, Mehdi Shafiee Ardestani2, Ramesh Ananthakrishnan3, Ali Jabbari-Arabzadeh2, Mohammad Shafiee Alavidjeh2, Mohammad Reza Aghasadeghi2, Sundararajan Elangovan3, Halanaik Dhanapathi4 
1 Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
2 Department of Nanobiotechnology and Hepatitis B/AIDs, Pasteur Institute of Iran, Tehran, Iran
3 Department of Radiodiagnosis, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
4 Department of Nuclear Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India

Correspondence Address:
Subramani Parasuraman
Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry
India

Aim: To determine the biodistribution properties of cleistanthin A and cleistanthin B in rodents using magnetic resonance imaging (MRI). Materials and Methods: Cleistanthins A and B, constituents of Cleistanthus collinus Roxb., were labelled with gadolinium (Gd 3+ ) directly and injected into normal and tumoric nude mice. The tissue signal intensity was measured using MRI to perform a noninvasive kinetic assay. Wistar rats were used for determination of the grayscale intensity to observe the distribution patterns of of cleistanthins A and B. Results: Cleistanthin A is kinetically more attractive to the gastrointestinal tract than is cleistanthin B, which gets accumulated in muscular tissues of mice in greater concentrations compared with cleistanthin A. Cleistanthin B but not cleistanthin A showed tumoric affinity and exhibited a tumor kinetic attraction in tumoric mice. In rats, cleistanthin A showed greater grayscale intensities in the brain, liver, and skeletal muscles in immediate post contrast MRI images, whereas the gadolinium tagged cleistanthin B showed higher grayscale intensities in the cardiac muscle and skeletal muscles in delayed post contrast MRI images. Conclusions: Cleistanthin A is more pharmacokinetically attractive to the gastrointestinal tract than cleistanthin B.


How to cite this article:
Parasuraman S, Raveendran R, Ardestani MS, Ananthakrishnan R, Jabbari-Arabzadeh A, Alavidjeh MS, Aghasadeghi MR, Elangovan S, Dhanapathi H. Biodistribution properties of cleistanthin A and cleistanthin B using magnetic resonance imaging in a normal and tumoric animal model.Phcog Mag 2012;8:129-134


How to cite this URL:
Parasuraman S, Raveendran R, Ardestani MS, Ananthakrishnan R, Jabbari-Arabzadeh A, Alavidjeh MS, Aghasadeghi MR, Elangovan S, Dhanapathi H. Biodistribution properties of cleistanthin A and cleistanthin B using magnetic resonance imaging in a normal and tumoric animal model. Phcog Mag [serial online] 2012 [cited 2020 Sep 27 ];8:129-134
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2012;volume=8;issue=30;spage=129;epage=134;aulast=Parasuraman;type=0