Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 16  |  Issue : 70  |  Page : 276-283

In vitro antiplasmodium and chloroquine resistance reversal effects of mangostin


1 Department of Pharmacy, Unit of Pharmacology and Toxicology, Al Rafidain University College, Al Mustansyria, Baghdad, Iraq
2 Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Kuala Lumpur, Malaysia
3 Department of Science and Technology, School of Bioscience and Biotechnology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
4 Department of Hematology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Kuala Lumpur, Malaysia
5 Department of Human Anatomy, Pharmacology Unit, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Correspondence Address:
Rusliza Basir
Department of Human Anatomy, Pharmacology Unit, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor
Malaysia
Zaid Osamah Ibraheem
Department of Human Anatomy, Pharmacology Unit, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor
Iraq
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_510_19

Rights and Permissions

Aim/Background: Chloroquine (CQ) resistance that appeared among different strains of Plasmodium falciparum is considered as the worst catastrophe in the realm of malaria chemotherapy. CQ is still the most favorable drug among other antimalarials especially in the poor endemic areas due to its high potency and cost-effectiveness. This urged the scientists to explore for other alternatives or sensitizers for CQ. Materials and Methods: In this experiment, the antiplasmodium and the CQ resistance reversing effects of mangostin were tested using the in vitro SYBRE green-1-based drug sensitivity assay and the isobologram technique, respectively. Furthermore, its safety level toward two types of mammalian cells, namely Vero cells and red blood cells (RBCs), was screened using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-based drug sensitivity and the RBCs hemolysis assays, respectively. On the other hand, its effect against hemozoin formation was screened using β-hematin formation. Meanwhile, its molecular characters were determined the in silico on-line free chemi-informatic Molinspiration software for the molecular characterization as well as the standard testes for the measurement of the antioxidant effect. Results: Mangostin was moderately effective and selective toward the plasmodium so it is unsuitable to be a substituent for CQ. But it improved the sensitivity of the parasite to CQ. The molecular elucidation suggests that its CQ resistance reversal effect can be ascribed to its ability to interfere with hemozoin formation or the intravacuolar accumulation of CQ. Conclusion: Overall, the study suggests mangostin as a possible pharmacophore to develop new CQ resistance reversing agents but further studies are recommended to confirm this notion.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed98    
    Printed0    
    Emailed0    
    PDF Downloaded24    
    Comments [Add]    

Recommend this journal