Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 16  |  Issue : 69  |  Page : 422-427

Apoptosis induction and reactive oxygen species generation by Artemisia absinthium l. leaf extract in MCF-7 breast carcinoma cells


Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China

Correspondence Address:
Aidong Wen
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032
P.R. China
Xiaopeng Shi
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032
P.R. China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_14_20

Rights and Permissions

Background: Breast cancer is the commonly occurring cancer among women in both high-resource and low-resource settings, and the primary cause of death among women globally owing to suboptimal anticancer chemotherapy. This reflects the imperative need for better management of breast cancer among women. Therefore, the current study was conducted to evaluate the anticancer properties of Artemisia absinthium L. leaf extract on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. Materials and Methods: Leaf sample of A. absinthium L. was subjected to the Soxhlet extraction method with ethanol. The extract was concentrated to prepare the crude plant extract, which was tested for anticancer properties. The anticancer activity of extract was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and against (MCF-7) cells. Flow cytometry using propidium iodide staining was used for the determination of cell cycle distribution and DCFHDA staining for the analysis of reactive oxygen species (ROS) production. Results: MTT assay revealed that the leaf extract of A. absinthium L. reduced the cell viability of MCF-7 cancer cells. The IC50of the crude extract was found to be 25 μg/mL. The results indicated that plant extract triggered the production of ROS and significantly reduced the mitochondrial membrane potential (ΔΨm). It also leads to the arrest of MCF-7 cells in sub-G1 stage of cell cycle and eventually induced apoptosis in a concentration-dependent manner as indicated by 4'-6-diamidino-2-phenylindole staining. Moreover, plant extract also reduced the colony-forming potential of MCF-7 cells in a dose-dependent manner. Conclusion: The present study demonstrated that ethanol extract of A. absinthium L. exhibited strong antiproliferative properties against breast cancer cells. Therefore, the extract can be used for the treatment for breast cancer directly or the chemical constituents may be used after the isolation.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed76    
    Printed2    
    Emailed0    
    PDF Downloaded15    
    Comments [Add]    

Recommend this journal