Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 16  |  Issue : 69  |  Page : 386-392

Effect of exogenous Ca2+ on growth and accumulation of major components in tissue culture seedlings of Sophora tonkinensis gagnep


1 College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002; Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
2 Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
3 Lushan College of Guangxi University of Science and Technology, Liuzhou, 545616, China
4 Guangxi Forest Inventory and Planning Institute, Nanning, 530011, China
5 College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
6 College of Agriculture; Key Laboratory of Genetics, Breeding and Comprehensive Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China

Correspondence Address:
Kun Hua Wei
Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning 530023
China
Zhong Yi Zhang
College of Agriculture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_362_19

Rights and Permissions

Background: Sophora tonkinensis Gagnep., well-known for its medicinal properties, grows in karst areas of China characterized by calcium (Ca) and drought. Due to excessive excavation, wild S. tonkinensis is almost extinct. Ca regulates the growth and development of plants and also functions in stress response. Objectives: The effects of exogenous Ca2+ on plant height, stem diameter, enzyme activity, endogenous hormone content, and other traits of S. tonkinensis , and accumulation of matrine and oxymatrine in its active constituents were studied. The purpose was to explore the mechanism of adaptation of S. tonkinensis to high Ca, to protect and artificially cultivate S. tonkinensis resources. Materials and Methods: Six concentrations of Ca2+ (0, 1.495, 2.99, 5.98, 8.97, and 11.96 mmol/L) were used. Agronomic traits were measured with a ruler, vernier calipers, and an electronic scale. Physiological and biochemical indices were measured using ultraviolet spectrophotometry. Endogenous hormone contents were determined by enzyme-linked immunosorbent assay. We determined the composition of oxymatrine and matrine using high performance liquid chromatography. Results: As Ca2+ concentration increased, the drying rate of S. tonkinensis decreased and then increased; root length and number, and rooting rate decreased; and the soluble sugar, soluble protein, and chlorophyll content increased and then decreased. reactive oxygen species increased, increasing enzyme activity to resist cell membrane damage under low concentrations of Ca2+ (0–2.99 mmol/L); high concentrations of Ca2+ (5.98–11.96 mmol/L) did more damage to S. tonkinensis , and enzyme activity was not coordinated. Low concentrations of Ca2+ (0–2.99 mmol/L) promoted methyl jasmonate content to reduce cell damage. Matrine and oxymatrine in the whole plant were highest under 5.98 mmol/L Ca2+ treatment, and in stems, leaves, and roots they were highest under 11.96 mmol/L Ca2+ treatment. Conclusion: S. tonkinensis can tolerate exogenous Ca concentrations between 2.99 and 5.98 mmol/L.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed49    
    Printed4    
    Emailed0    
    PDF Downloaded20    
    Comments [Add]    

Recommend this journal