Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 16  |  Issue : 69  |  Page : 294-302

Dendrobium officinale kimura et migo improved dry eye symptoms via promoting tear production in an experimental dry eye rat model


1 Institute of Chinese Medicine; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, Guangdong, China
2 Institute of Chinese Medicine; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
3 Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, Guangdong, China
4 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China

Correspondence Address:
Jiang-Miao Hu
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan
China
Ping-Chung Leung
5/F, The CUHK Hong Kong Jockey Club, School of Public Health Building, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
China
Zheng-Zhi Wu
Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, Guangdong
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_435_19

Rights and Permissions

Objectives: To evaluate the ameliorative effect of Dendrobium officinale Kimura et Migo (DO) on a desiccated environment-induced experimental dry eye rat model and elucidate its underlying mechanisms. Materials and Methods: The Sprague-Dawley rats were kept in low-humidity environment and received constant airflow for 8 weeks to establish the experimental dry eye model. DO water extract (DOW, 372 mg/kg/day) was orally administered daily for 8 weeks. Schirmer's test was used to measure the tear fluid production at days 0, 14, 28, 42, and 56. At the end of experiment, lacrimal gland tissues and eyeballs were collected for hematoxylin and eosin staining, PAS staining, and immunohistochemical staining. Inflammatory cytokines in conjunctiva including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and matrix metalloproteinase 9 were measured by real-time PCR. The aquaporin 5 (AQP5) expression in lacrimal gland was also determined using Western blot assay. Results: DOW treatment (DOWT) increased the tear production of rats significantly in the desiccated environment at day 42. Histological analysis revealed that DOW could reverse destruction of conjunctiva and increase goblet cell number and mucin expression in the experimental dry eye rats. In dry eye rats, desiccated environment and constant airflow induced TNF-α and IL-1β production in the conjunctiva, whereas DOWT reversed the upregulation of proinflammatory cytokines. Moreover, DOWT increased the expression of AQP5 at protein level in the lacrimal gland tissues in both desiccated and normal environmental conditions. Conclusion: The present study suggests that DO has therapeutic potential on dry eye symptoms through upregulating AQP5 expression, increasing tear production, inhibiting conjunctiva destruction and inflammation, as well as promoting mucin production.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed59    
    Printed4    
    Emailed0    
    PDF Downloaded18    
    Comments [Add]    

Recommend this journal