Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 16  |  Issue : 68  |  Page : 8-12

A unified method for different placental products species identification


1 Department of Chemical Engineering and Biotechnology, Ph.D. program, Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
2 Department of Chemical Engineering and Biotechnology, Master program of Biochemical and Biomedical Engineering, Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
3 Department of Chemical Engineering and Biotechnology, Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology; Division of Research and Analysis, Taiwan Food and Drug Administration, Taipei, Taiwan
4 Department of Chemical Engineering and Biotechnology, Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan

Correspondence Address:
Chih-Hung Huang
Department of Chemical Engineering and Biotechnology, Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, 1, Section 3, Zhongxiao E. Rd., Taipei 10608
Taiwan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_296_19

Rights and Permissions

Background: Placentas are widely used in the production of cosmetics, Chinese medicines, and injections. As the esthetic medicine market grows, challenges such as impure preparations and an increasing number of counterfeit products develop, owing to the lack of standard inspection methods and accurate description of the composition of these products. Objectives: To develop a universal species identification method for placental products. Materials and Methods: Fresh swine, cattle, goat, and frozen human placenta were used as references, while Placenta Hominis and placental extract products from the market as trial samples. Samples were prepared by kit-free DNA isolation, and vertebrate-specific primer sets of mitochondrial 16S and 12S rRNA were used for species-specific region amplification. Direct sequence of amplicons and National Center for Biotechnology Information database comparison was carried for species identification of the testing samples. Results: Trail tests had confirmed the usability of this method. Six of seven Placenta Hominis samples were shown to contain human DNA traces, while the seventh showed no DNA signals belonging to any mammals and a paper-like material underneath the vegetal part, instead of membrane-like placental tissue by visual inspection, suggesting the possibility of counterfeit. Eight injectable and cosmetic placental extract products were tested, and none of them contained analyzable DNA or comparable protein fragments except one, which DNA was from rainbow trout (Oncorhynchus mykiss) rather than sheep, as per the product claim, and was hence misbranded as per the U.S. Food and Drug Administration definition. Conclusion: Our species identification method is easy-to-operate, unified, and resource-saving, which can be applied to different placental products.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed600    
    Printed39    
    Emailed0    
    PDF Downloaded193    
    Comments [Add]    

Recommend this journal