Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 16  |  Issue : 67  |  Page : 51-56

Fucoxanthin attenuates behavior deficits and neuroinflammatory response in 1-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine-induced Parkinson's disease in mice


1 Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Huaiyin District, Jinan, Shandong Province, PR China
2 Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Huaiyin District, Jinan, Shandong Province, PR China

Correspondence Address:
Qi Pang
Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Huaiyin District, Jinan 250021, Shandong Province
PR China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_318_19

Rights and Permissions

Background: Parkinson's disease (PD) is one of the foremost neurological disorders which is differentiated next to the progressive dopamine (DA) loss, especially in the area of substantia nigra pars compacta (SNpc). Aberrant neuroinflammation, as well as excessive reactive oxygen species (ROS) generation, have exposed to stimulate neuronal defeat in the gradual developing PD. The current study investigated whether fucoxanthin could attenuate the pathophysiology seen in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated PD model. Materials and Methods: C57BL/6 mice received 30 mg/kg of MPTP (i.p.) every day for 5 consecutive days to establish PD, subsequently everyday treatment with fucoxanthin intended for 7 days. Intraperitoneal injection of MPTP, resulted in impaired motor functions, dopaminergic neuronal loss, decreased DA, Tyrosine hydroxylase (TH) levels, and microglial activation-mediated neuroinflammation. Results: Fucoxanthin administration ameliorated α-synuclein abnormal accumulation and motor impairment in MPTP-induced chronic PD mouse model. Our observed findings revealed that fucoxanthin administration reverses the MPTP-mediated decline of DA neuron, TH along with microglial activation predominantly in the SNpc region. The Western blot analysis exposed that fucoxanthin suppressed the expression patterns of proinflammatory cytokines following MPTP administration. Conclusion: In conclusion, Fucoxanthin exerts neuroprotective potential in opposition to MPTP-mediated PD mice through repressing α-synuclein expression, oxidative stress and gliosis, recommended that fucoxanthin might perform as a beneficial remedy toward PD amelioration.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed156    
    Printed0    
    Emailed0    
    PDF Downloaded52    
    Comments [Add]    

Recommend this journal