Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 16  |  Issue : 67  |  Page : 132-139

Study on the inhibition of PLD on IAV-induced pulmonary macrophage based on autophagy and apoptosis


1 Department of Experimental Center for Medical Basic Teaching, The College of Traditional Chinese Medicine, Changsha, Hunan, China
2 Department of Microbiology, The Medicine School, Changsha, Hunan, China
3 Department of Postgraduate, Graduate School, Changsha, Hunan, China
4 Laboratory of Integrated Chinese and Western Medicine, The College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China

Correspondence Address:
Qing-Hu He
Laboratory of Integrated Chinese and Western Medicine, The College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_207_19

Rights and Permissions

Background: Platycodin D (PLD) comes from the main triterpenoid saponins in the dry roots of Platycodon grandiflorum, which has been used in traditional Chinese medicine in the treatment of respiratory disease. This study aimed to evaluate the therapeutic effects of PLD on mouse alveolar macrophages induced by influenza A virus (IAV) in vitro and to investigate the PLD of its action. Materials and Methods: Raw264.7 mouse alveolar macrophages were grown in culture and the Cell Counting Kit-8 assay determined cell viability. Cells were treated for 24 h with increasing doses of PLD (0, 5, 10, 20, 40, 60, 80, 100 μM). The apoptosis was detected by Annexin V-FITC/PI and Tunel assay. Levels of interleukin (IL)-1 β, IL-6 and tumor necrosis factor (TNF)-α of supernatants were assessed using enzyme-linked immunosorbent assay. The numbers of phagophores, autophagosomes, and autolysosomes and the ultrastructure of cells were assessed using transmission electron microscope assay. The relative protein expression of microtubule-associated protein light chain (LC) 3I, LC3II, Beclin-1, and B cell lymphoma (Bcl2) was evaluated by Western blotting. The localizations of Beclin-1 and Bcl2 were viewed with a fluorescence microscope. Results: PLD treatment resulted in significant dose-dependent inhibition of the growth of Raw264.7 cells with the half-maximal inhibitory concentration of 115.74 μM at 24 h. After Raw264.7 cells infected by influenza virus, PLD (2.5, 5, and 10 μM) can improve the activity of cells, reducing apoptosis of cells, decreasing the concentrations of IL-1 β, IL-6, and TNF-α in the supernatant of cells, reducing autophagic injury of cells and regulating the protein expression of Beclin-1 and Bcl2. Conclusion: PLD could inhibit excessive apoptosis and autophagy of macrophage cells induced by IAV in a dose-dependent manner and then inhibits the secretion of inflammatory factors caused by influenza virus infection caused by apoptosis and autophagy and then ultimately regulate the pathogenesis of influenza virus.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed26    
    Printed0    
    Emailed0    
    PDF Downloaded10    
    Comments [Add]    

Recommend this journal