Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 66  |  Page : 468-475

Neuroprotective efficacy of polyphenols of marine brown macroalga Ecklonia cava in diabetic peripheral neuropathy


Department of Pharmacology, Karnataka College of Pharmacy, Bengaluru, Karnataka, India

Correspondence Address:
Suman Samaddar
Department of Pharmacology, Karnataka College of Pharmacy, Bengaluru - 560 064, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_212_19

Rights and Permissions

Objectives: In this study, the neuroprotective effect of polyphenols isolated from the brown marine macroalga Ecklonia cava (EC) was evaluated in experimental diabetic peripheral neuropathy (DPN). Materials and Methods: The polyphenolic fraction from EC was isolated. DPN was induced in animals by intraperitoneal injection of streptozotocin (45 mg/kg, b. w) and maintained for 6 weeks followed by treatment with EC polyphenols (ECPP) or epalrestat for 30 days. Nerve conduction velocity (NCV) of sciatic nerves and the compound muscle action potential (CMAP) of the gastrocnemius muscle were measured using a non-invasive method followed by neuropathic thermal analgesia and muscular grip strength. Sciatic nerve aldose reductase (AR) activity, intraneural sorbitol accumulation, Na+K+-ATPase activity, production of proinflammatory cytokines (interleukin-6 [IL-6], IL-1 β, and tumor necrosis factor alpha [TNF-α]), and expression of AR and protein kinase C (PKC) were assessed. Results: The ECPP were found to inhibit AR activity as well as their expression in diabetic animals, thereby improving the NCV, CMAP, muscle grip strength, hot plate, and tail-flick response time. Improvements in the sciatic nerve Na+K+-ATPase activity and intraneural accumulation of sorbitol, an index of AR overactivity, were evident with ECPP treatment. The production of proinflammatory cytokines (IL-6, IL-1 β, and TNF-α) and expression of PKC were also diminished. Conclusion: The data suggest that the polyphenols of EC have neuroprotective potential against experimental DPN.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed88    
    Printed0    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal