Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 66  |  Page : 410-418

Comparative in vitro and in silico characterization of anticancer compounds piceatannol, biochanin-A and resveratrol on breast cancer cells


1 Department of Biotechnology, Upstream Process Development, Sun Pharmaceutical Industries, Ltd, Vadodara, Gujarat, India
2 Department of Biotechnology, Koneru Lakshmaiah Educational Foundation (K L [Deemed to be University]), Guntur, Andhra Pradesh, India
3 Department of Biotechnology, Koneru Lakshmaiah Educational Foundation (K L [Deemed to be University]), Guntur, Andhra Pradesh; Department of Indo American Cancer Research Foundation, Basavatharakam Indo-American Cancer Hospital and Research Institute, Banjara Hills, Hyderabad, Telangana, India

Correspondence Address:
Mahendran Botlagunta
Department of Biotechnology, Koneru Lakshmaiah Educational Foundation (K L [Deemed to be University]), Guntur, Andhra Pradesh - 522 502
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_146_19

Rights and Permissions

Background: Biochanin-A and Piceatannol are phytochemical constituents extracted from Sophora interrupta. Although both the compounds were isolated from a single plant, these compounds were not compared against anticancer activity. Objective: A systematic comparative analysis of biochanin-A, piceatannol, and resveratrol was performed to investigate cancer cell viability, motility, metabolic changes in Michigan Cancer Foundation-7 breast cancer cells, and structure compound interaction with the vascular endothelial growth factor (VEGF) receptors were studied. Materials and Methods: Cancer cell viability was studied using 3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazo- lium bromide and acridine orange (AO)/ethidium bromide (EtBr) assay. The wound-healing assay was performed by measuring cell migration from the scratch area. Metabolic changes of the compounds in culture conditions were recorded using Fourier-transform infrared (FT-IR) spectroscopy. Molecular docking and dynamic simulations were performed using Schrödinger software. Results: Our results showed that the half-maximal growth inhibitory concentration for biochanin-A is 150 μM/ml and piceatannol and resveratrol showed 150 μM/ml, which is evident from the uptake of AO and EtBr dyes by live/dead cells. Moreover, drug-treated cells were unable to fill the cleared area from the scratch area, which suggests that all compounds effectively inhibit cell motility. FT-IR fingerprint showed a marked difference in the percentage of transition and dynamic structural changes between untreated and treated samples. Strong hydrogen-bond interaction with VEGF receptor-1 (VEGFR1) and VEGFR2 proteins and their interactions were stable throughout the simulation period. Moreover, these compounds inhibited sprouting of a new blood vessel from the chicken aorta and microvessels formation in the in ovo chorioallantoic membrane assay. Conclusion: Taken together, we conclude that anticancer and anti-angiogenic activity, structure-function relationship of biochanin-A is like well-known anticancer compound resveratrol and its metabolic product piceatannol in breast cancer cells.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed74    
    Printed1    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal