Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 66  |  Page : 371-376

Inhibitory effects of fermented soybean tempeh on the anti-adhesive properties of Actinomyces viscosus and plaque growth in vitro


1 Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Perak, Malaysia
2 Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman; Centre for Bio-Diversity Research, University Tunku Abdul Rahman, Perak, Malaysia
3 Centre for Bio-Diversity Research, University Tunku Abdul Rahman; Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Perak, Malaysia

Correspondence Address:
Chong Seng Shit
Department of Biological Science, Faculty of Science, University Tunku Abdul Rahman, Perak
Malaysia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_29_19

Rights and Permissions

Background: Tempeh, the Southeast Asian traditional food, has garnered great attention for its antibacterial property against Gram-positive and Gram-negative pathogens, and antidiarrheal effect. We have previously reported the potentiality of tempeh hexane fraction (HXF) in ceasing Actinomyces viscosus biofilm formation in vitro. Objective: Here, we investigated the efficacy of tempeh HXF on other cariogenic virulence traits of A. viscosus such as adhesive properties, acid production, and plaque growth. Materials and Methods: Anti adhesion of HXF was assessed based on its effects on the number of cells adhering to the surface of tooth in sucrose-dependent (SD) and sucrose-independent (SI) medium. The potential of HXF to inhibit the capability of A. viscosus to generate acids was investigated by pH drop assay. The HXF at different concentrations were used to determine the LC50based on brine shrimp lethality assay. Finally, the prospect of HXF as an inhibitor of plaque formation was investigated using artificial saliva-coated denture as an in vitro batch model. Results: HXF significantly decreased colony-forming unit of SD (1.07 log reduction) and SI (0.56 log reduction)-mediated adsorption of bacterial cells onto the tooth surface over 4- and 12-h incubation, respectively. Acid production was reduced after treated with HXF in a dose-dependent manner. Finally, a substantial reduction in plaque coverage area >55% was found on the HXF treated-denture. Conclusion: The anti-biofilm effect of HXF was associated with the suppression of A. viscosus adhesion to tooth surfaces and reduction in acid production. Furthermore, in vitro anti-plaque potential of HXF was demonstrated.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed240    
    Printed3    
    Emailed0    
    PDF Downloaded1    
    Comments [Add]    

Recommend this journal