Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 65  |  Page : 730-735

A green method for preparation of curcuminoid-rich Curcuma longa extract and evaluation of its anticancer activity


1 Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
2 Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
3 Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, Thailand

Correspondence Address:
Pharkphoom Panichayupakaranant
Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112
Thailand
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_162_19

Rights and Permissions

Background: Curcuminoids, i.e., curcumin, demethoxycurcumin, and bisdemethoxycurcumin are a major active constituent of Curcuma longa L., which possess antioxidant, anti-inflammatory, antitumor, anticancer, and various other biological activities. Objective: To establish a green method for preparation of curcuminoid-rich C. longa extracts (CRE) using microwave-assisted extraction (MAE) together with a simple one-step fractionation and to investigate the anticancer activity of CRE compared with the three marker curcuminoids. Materials and Methods: MAE was used as a green extraction method, and a macroporous resin (Diaion® HP-20) column was used for fractionation of C. longa extract to produce CRE. The sulforhodamine B assay was used to evaluate in vitro anticancer activity of the curcuminoids. Results: The optimal conditions of MAE for extraction of curcuminoids are employing ethanol as the solvent and using three irradiation cycles in a microwave powered at 900 W (one cycle is 3 min power-on and 30 s power-off). The curcuminoid extract was subsequently fractionated on a Diaion® HP-20 column eluted with 55% and 60% v/v ethanol, respectively, to obtain CRE that contained total curcuminoids of 88% w/w. CRE exhibited good anticancer activities against A549, MCF-7, HeLa, and HT-29 cells, with 50% inhibitory concentration values of 5.2, 4.5, 7.5, and 8.3 μg/mL, respectively, which almost equals those of the marker curcuminoids. Conclusion: This study indicated a potential use of CRE for anticancer purposes in food and nutraceutical applications. CRE has more advantages than pure curcuminoids for industrial applications in terms of using simple, low-cost, and environmentally friendly processes.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed454    
    Printed20    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal