Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 65  |  Page : 715-721

Antitumor effects and mechanism of protein from Panax ginseng C. A. Meyer on human breast cancer cell line MCF-7


1 Key Laboratory of Ginseng Chemistry and Pharmacology of Jilin Province, Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, People's Republic of China
2 Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, People's Republic of China
3 Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, Jilin, People's Republic of China
4 Key Laboratory of Ginseng Chemistry and Pharmacology of Jilin Province, Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
5 Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, People's Republic of China

Correspondence Address:
Changbao Chen
Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, Jilin
People's Republic of China
Shuying Liu
Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, Jilin
People's Republic of China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_151_19

Rights and Permissions

Context: Panax ginseng is well known for its various bioactivities, but specific knowledge on ginseng proteins (GPs) is limited. Aims: Protein components were extracted from ginseng and antitumor activity in human breast cancer cell line MCF-7 was investigated. Settings and Design: Five methods were applied to extract GP and the antitumor effects and mechanism of GP on MCF-7 were explored, including proliferation, cell cycle, apoptosis, and migration. Subjects and Methods: Five extraction methods were employed. MCF-7 cell proliferation was measured using a cell counting kit-8 with different GP concentrations (0, 0.25, 0.5, 1, 2, and 4 mg/mL) and half inhibitory concentration values were calculated. Cell cycle, morphology, and apoptosis were investigated using immunofluorescence staining and flow cytometry. Migration was probed by scratch wound healing and transwell assays. Quantitative-polymerase chain reaction and western blotting were performed to analyze apoptosis-associated gene/protein expression. Statistical Analysis: Experimental data were analyzed by Microsoft Excel and SPSS software. Results: Acetone extraction achieved the highest GP purity and yield. GP inhibited proliferation of MCF-7 in a time-dependent manner and induced cell cycle arrest at G1/S and apoptosis. Scratch wound healing and transwell assays showed that cell migration was also inhibited by GP and expression levels of Bcl-2 and Bax were affected. Conclusion: GP elicits antitumor activity by inhibiting cell proliferation and migration and inducing cell cycle arrest and apoptosis in MCF-7 cells and may act via the Bcl-2 and Bax apoptotic pathway.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed245    
    Printed5    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal