Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 65  |  Page : 600-606

Rosmarinic acid inhibits stem-like breast cancer through hedgehog and Bcl-2/Bax signaling pathways


1 Department of Health Management, Fujian Health College, Fuzhou, Fujian, China
2 Medical Technology Center, Fujian Health College, Fuzhou, Fujian, China
3 Department of Medicine, Brain and Mind Institute, University of Ottawa, Ottawa, Canada

Correspondence Address:
Feng Ni
Medical Technology Center, Fujian Health College, No. 366 Jingxi Town, Fuzhou 350101
China
Hong Li
Department of Health Management, Fujian Health College, No. 366 Jingxi Town, Fuzhou 350101
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_22_19

Rights and Permissions

Background: Rosmarinic acid (RA) is a natural phenolic acid present in various Lamiaceae herbs. RA shows anti-tumor effects on many tumors but has yet to be tested on triple negative breast cancer and its derived breast cancer stem-like cells (BCSCs). Objective: This study aimed to detect whether RA could inhibit the proliferation and migration of BCSCs through hedgehog (Hh) signaling while promoting apoptosis via Bcl-2/Bax. Materials and Methods: BCSCs from the human breast cancer cell line MD-MB-231 were isolated by fluorescence-activated cell sorting with the surface markers of CD44*/CD24-/low. The viability, migration, and apoptosis of BCSCs were assessed by the CCK-8 assay, cell wound healing test, and flow cytometry for positive staining for Annexin V-FITC and propidium iodine (PI), respectively. mRNA and protein levels of Hh and Bcl-2/Bax signaling pathways were obtained by real-time reverse transcriptase polymerase chain reaction and immunoblots. Results: RA inhibited the viability and migration of BCSCs and increased the numbers of late apoptotic cells. Consistent with the increased apoptosis, RA treatment downregulated Bcl-2 while upregulating Bax expression. In line with its effect to limit migration, RA treatment inhibited the expression of Hh-related genes smoothened and glioma-associated oncogene homolog 1. Conclusion: The present study suggests that RA exerts anti-cancer effects on BCSCs by inhibiting Bcl-2 and Hh signaling pathways.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed325    
    Printed7    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal