Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 65  |  Page : 579-585

Effects of Atractylodes macrocephala rhizoma on isoproterenol-induced myocardial hypertrophy in mice


1 Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
2 Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai; Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang Province, China

Correspondence Address:
Jian-Ping Gao
Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_617_18

Rights and Permissions

Background: The studies about the protective effect on the heart of single Atractylodes macrocephala rhizoma (AMR) herb and mechanisms have not been reported. Objective: The purpose of this study was to assess the effects of AMR on attenuating myocardial hypertrophy induced by isoproterenol (ISO) in mice. Materials and Methods: Mice were randomly divided into normal control group, ISO control group, ISO plus metoprolol (60 mg/kg) group, ISO plus AMR (2, 4, and 8 g/kg) groups, and AMR (4 g/kg) control group. The mice with myocardial hypertrophy were established by subcutaneous (s.c.) injection with ISO (2 mg/kg/d) and administered intragastrically with the corresponding drugs in the volume of 0.2 mL/10 g/d for 7 days. In the normal and AMR control groups, mice were injected (s.c.) with physiological saline (the solvent for ISO) and administered intragastrically with drinking water for 7 days. Results: Compared with the ISO-induced group, AMR significantly decreased heart weight index, left ventricular weight index, and average transverse area of cardiomyocytes, significantly increased the activity of total superoxide dismutase in serum and the level of the angiotensin II receptor type (AT) gene expression in myocardium and significantly decreased the contents of malondialdehyde, cyclic adenosine monophosphate , and aldosterone in serum and angiotensin II (Ang II) in myocardium. Conclusion: The ability of AMR to mitigate myocardial hypertrophy is partly associated with its anti-oxidative effect, restraining excessive secretion or activation of neuroendocrine factors, and the stronger upward effect on AT2gene expression than AT1.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed280    
    Printed10    
    Emailed0    
    PDF Downloaded3    
    Comments [Add]    

Recommend this journal