Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 63  |  Page : 473-478

Headspace–solid-phase microextraction gas chromatography method to quantify Thymus vulgaris essential oil in polymeric nanoparticles


1 Departamento de Química Analítica, Facultad de Medicina; Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Mexico
2 Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Mexico
3 Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Mexico, León

Correspondence Address:
Rocío Álvarez-Román
Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Dr. Aguirre Pequeño Col. Mitras Centro S/n Monterrey, N.L. México. C.P. 64460, Monterrey
León
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_277_18

Rights and Permissions

Background: Thymus vulgaris essential oil (Tv-EO) is known to have antibacterial, antifungal, and antioxidant activities. Encapsulation of Tv-EO in polymeric nanoparticles (NPs) can prevent volatilization of its components and can provide protection against external agents. Under these circumstances, it is crucial to assure the presence and quantity of the Tv-EO components (γ-terpinene, thymol, and carvacrol) in the NPs. Objective: To determine the chemical composition and physicochemical characterization of Tv-EO as well as develop and validate a HSPM-gas chromatography (GC) method for the analysis of Tv-EO components encapsulated in NPs. Materials and Methods: Tv-EO was characterized by physicochemical analysis for relative density, refractive index, and optical rotation and analyzed by GC flame ionization detector and GC-mass spectrometry. The headspace–solid-phase microextraction-gas chromatography (HS-SPME-CG) validation was assessed, Tv-EO-NPs were prepared by nanoprecipitation, and its properties were determined by photon correlation spectroscopy. Results: Tv-EO was characterized by physicochemical analysis for relative density (0.934 g/cm3), refraction index (1.559), and optical rotation (−0.084°). Seventeen components were identified in Tv-EO; among these, the sesquiterpenes, thymol (34.28%), o-cymene (31.78%) and γ-terpinene (13.22%). The method was validated for linearity (R2 ≥ 0.99), precision (intraday 7.02, 10.33, and 8.60 and inter-day 10.60, 10.60, and 10.99), accuracy (99.35, 109.4, and 98.84%) and robustness for γ-terpinene, thymol and carvacrol, respectively. The limit of detection and limit of quantification were calculated as 0.69, 0.40, and 0.39 μg/mL and 2.11, 1.22, and 1.20 μg/mL for γ-terpinene, thymol, and carvacrol, respectively. An encapsulation percentage of 47.51% of total essential oil was obtained. Conclusion: The experimental data show that HS-SPME reduces interference of the NP-matrix and concentrates the Tv-EO components. HS-SPME-CG can be considered as a good alternative to the already existing methods for analysis of essential oil encapsulated in NPs.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed222    
    Printed12    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal