Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 61  |  Page : 177-182

Quality assessment of pollen typhae by high-performance liquid chromatography fingerprint, hierarchical cluster analysis, and principal component analysis


1 Research Center of Traditional Dai Medicine, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
2 Deparment of Pharmacy, Qilu Meical University, Zibo, China
3 Department of Anorectal, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
4 Solebury School, New Hope, PA, USA

Correspondence Address:
Mingfeng Qiu
School of Pharmacy, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai 200240
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_469_18

Rights and Permissions

Aim: This study aims to establish the quality assessment methods of Pollen Typhae. Materials and Methods: High performance liquid chromatography (HPLC) fingerprint analysis, hierarchical cluster analysis (HCA), and principal component analysis (PCA) were used for quality evaluation of Pollen Typhae from different origins together with microscopic identification. Then, the quantity of 43 crude Pollen Typhae samples in the market was collected and analyzed. Results: In true and false test, four False Pollen Typhae samples, 13 Net Pollen Typhae (NPT) samples, and 26 Grass Pollen Typhae (GPT) samples were identified by microscopic identification. In quality test, the amounts and percentages of Qualified Pollen Typhae, Unqualified Pollen Typhae were 24 (55.81%) and 19 (44.19%), respectively with typhaneoside and isorhamnetin-3-O-neohesperidoside determined by HPLC according to China Pharmacopeia. We analyzed 43 samples from 20 regions and established their fingerprints, then selected 31 peaks as characteristic peaks and calculated their relative peak areas. To express the HPLC fingerprints quantitatively, peak 16, 18, 22, 23, and 26 were verified as typhaneoside, isorhamnetin-3-O-neoheptanoside, rutin, quercetin, and isorhamnetin. The similarity of correlation coefficients in chromatogram was 0.954 ± 0.007 and 0.922 ± 0.004 for NPT and GPT, respectively, while 0.67 ± 0.008 for 43 samples. The analysis of HCA and PCA can distinguish true or false, qualified or unqualified of Pollen Typhae. Conclusion: HPLC fingerprint combined with HCA and PCA provides a very efficient and comprehensive method for quality evaluation of Pollen Typhae. Abbreviations used: HCA: Hierarchical cluster analysis; PCA: Principal component analysis; FPT: False Pollen Typhae; NPT: Net Pollen Typhae; GPT: Grass Pollen Typhae; QPT: Qualified Pollen Typhae; UPT: Unqualified Pollen Typhae; RSDs: The relative standard deviations; CASE: Computer Aided Similarity Evaluation; TCM: Traditional Chinese medicine.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1029    
    Printed74    
    Emailed0    
    PDF Downloaded1    
    Comments [Add]    

Recommend this journal