Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 60  |  Page : 52-58

Durio zibethinus rind extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications


1 Faculty of Applied Science, AIMST University, Bedong, Kedah, Malaysia
2 Faculty of Engineering, The University of Nottingham, Semenyih, Selangor, Malaysia
3 KMCH College of Pharmacy, Coimbatore, Tamil Nadu, India; Faculty of Pharmacy, AIMST University, Bedong, Kedah, Malaysia
4 School of Bioprocess Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
5 Department of Biological Engineering, Inha University, Incheon, Republic of Korea
6 Faculty of Pharmacy, AIMST University, Bedong, Kedah, Malaysia

Correspondence Address:
Veerasamy Ravichandran
Faculty of Pharmacy, AIMST University, Semeling, Bedong, Kedah
Malaysia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_400_18

Rights and Permissions

Background: Silver nanoparticles play a profound role in the field of biology and medicine due to its attractive physiochemical properties. Objective: The present work was aimed to develop green approach for the synthesis of silver nanoparticles (DRAgNPs) using D. zibethinus rind aqueous extract and determination of its antimicrobial and cytotoxic effect against brine shrimp. Materials and Methods: Aqueous extract of D. zibethinus rind was used to reduce silver nitrate to silver nanoparticles. The various reaction parameters were optimized, and DRAgNPs were characterized for size, shape, and nature. Results: Surface plasmon resonance confirmed the formation of DRAgNP's with maximum absorbance at λmaxof 418 nm. Scanning transmission electron microscopy and transmission electron microscope images revealed the morphology of the DRAgNPs were spherical with size range of 20 and 60 nm. Atomic force microscopy images confirmed the average particles size of DRAgNPs was to be 55 nm. The stability of the nanoparticles was also confirmed by the zeta potential which was found to be −15.82 mV. X-ray powder diffraction and energy-dispersive X-ray spectroscopy analysis confirmed the nature and the presence of Ag. DRAgNPs showed considerable antimicrobial activity against Salmonella typhimurium, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Staphylococcus haemolyticus, and Bacillus subtilis, and exhibited better cytotoxicity against brine shrimp (LC50 =2.55 mg/mL). Conclusion: Based on the present study, it can be concluded that the green synthesis of silver nanoparticles using D. zibethinus rind is an eco-friendly and inexpensive method, and DRAgNPs could be used in the field of water treatment, pharmaceuticals, biomedicine, biosensor, and nanotechnology in the near future. Abbreviation used: SEM: Scanning transmission electron microscopy; TEM: Transmission electron microscope; AFM: Atomic force microscopy; XRD: X-ray powder diffraction; EDX: Energy-dispersive X-ray spectroscopy.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed953    
    Printed10    
    Emailed0    
    PDF Downloaded1    
    Comments [Add]    

Recommend this journal