Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 14  |  Issue : 58  |  Page : 567-571

Traditional chinese medicine ingredients Rosa damascena and Poria cocos promote phagocytosis and a dendritic cell phenotype in THP-1 cells


1 Amway Research and Development, Ada, MI, USA
2 Nutrilite Health Institute, Buena Park, CA, USA

Correspondence Address:
David J Fast
Amway Research and Development, 7575 Fulton St. E., 50.2D, Ada, MI
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_564_17

Rights and Permissions

Background: Rosa damascena and Poria cocos are ingredients commonly used in Traditional Chinese Medicine. R. damascena is used to promote blood circulation as well as liver and stomach function, while P. cocos is used to eliminate dampness and enhance spleen function. Objective: The objective of the study is to investigate possible mechanisms by which R. damascena and P. cocos may promote immune function. Materials and Methods: Phagocytosis and dendritic cell (DC) surface marker expression assays were used to evaluate the effect of R. damascena and P. cocos extracts on human THP-1 monocytic leukemia cell biology. Results: R. damascena and P. cocos extracts both enhanced phagocytosis of latex beads by THP-1 cells, and when combined, phagocytosis was enhanced to a level greater than what might be expected by adding the individual phagocytosis responses together. In addition, both extracts enhanced maturation of THP-1 cells into a DC phenotype as measured by increased surface expression of the costimulatory molecules CD14, CD40, CD80, and CD86. Conclusion: These results suggest that Rosa damascena and P. cocos may promote monocyte phagocytosis and then stimulate differentiation of the cells into DCs thereby bridging innate and adaptive immune responses. Abbreviations used: AKT: Protein kinase B; AP-1: Activator protein-1; Bcl2: B cell lymphoma-2; CD: Cluster of differentiation; COX-2: Cyclooxygenase-2; DC: Dendritic cell; EGFR: Epidermal growth factor receptor; FOXO1: Forkhead box protein-1; GM-CSF: Granulocyte/macrophage colony stimulating factor; HLA: Human leukocyte antigen; HPLC: High-performance liquid chromatography; IL-1β: Interleukin-1β; IL-4: Interleukin-4; M1: Classically activated macrophage; M2: Alternatively activated macrophage; MAPK: Mitogen-activated protein kinase; NFκB: Nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3: NLR Family Pyrin Domain Containing 3; ϕ: Phagocytic index; p53: Tumor protein p53; PARP: Poly (ADP-ribose) polymerase; PMA: Phorbol 12-myristate 13-acetate; PRR: Pattern recognition receptor; STAT: Signal transducer and activator of transcription SD: Standard deviation; Syk: Spleen tyrosine kinase; TCM: Traditional Chinese Medicine.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed104    
    Printed2    
    Emailed0    
    PDF Downloaded5    
    Comments [Add]    

Recommend this journal