Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 14  |  Issue : 57  |  Page : 440-447

The reactive oxygen species/AMP-activated protein kinase signaling pathway's role in the apoptotic induction of MCF-7 human breast cancer cells caused by the ethanol extract of Citrus Unshiu peel


1 Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, Republic of Korea
2 Department of Molecular Biology, College of Natural Sciences, Dongeui University, Busan, Republic of Korea

Correspondence Address:
Yung Hyun Choi
Department of Biochemistry, Dongeui University College of Korean Medicine, 42 San, Yangjung-Dong, Busan 47227
Republic of Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_484_17

Rights and Permissions

Objective: Citrus unshiu Markovich, which has been used for many different purposes in traditional medicine, has been reported to possess various pharmacological properties; however, its anticancer potentials are relatively unknown. This study aimed to investigate the effect of the ethanol extract of C. unshiu peel (EECU) on MCF-7 human breast cancer cells. Materials and Methods: Cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was detected using DAPI staining and flow cytometry. Mitochondrial membrane potential (MMP), reactive oxygen species (ROS) assay, caspase activity, and Western blotting analysis were used to confirm the basis of apoptosis. Results: Our results demonstrated that the inhibition of MCF-7 cell survival by EECU was associated with the induction of apoptosis. EECU-induced apoptosis resulted in a sequence of events, which began with the increased expression of death receptor-related proteins and a Bax/Bcl-2 expression ratio. This led to the collapse of MMP and the cytosolic release of cytochrome c, which was accompanied by and the activation of caspase-9 and caspase-8 and proteolytic degradation of poly (ADP-ribose) polymerase. EECU also induced apoptosis of MCF-7 cells by stimulating AMP-activated protein kinase (AMPK), through the generation of ROS. However, compound C, a pharmacological inhibitor of AMPK, significantly weakened EECU-induced apoptosis. Furthermore, the activation of AMKP, induction of apoptosis, and reduction of cell viability by EECU were effectively prevented when ROS production was blocked. Conclusions: These results demonstrate that EECU inhibits MCF-7 cell proliferation by activating the intrinsic and extrinsic apoptosis pathways through the ROS-dependent activation of the AMPK pathway. Abbreviations used: ACC: Acetyl-CoA carboxylase; AMPK: 5′-AMP-activated protein kinase; DCF-DA: 2′,7′-dichlorofluorescin diacetate; DMSO: Dimethylsulfoxide; DR: Death receptor; ECL: Enhanced chemiluminescence; EECU: Ethanol extract of Citrus unshiu peel; ELISA: Enzyme-linked immunosorbent assay; FADD: Fas-associated protein with death domain; FasL: Fas ligand; FBS: fetal bovine serum; FITC: Fluorescein isothiocyanate; HRP: Horseradish peroxidase; IETD: Ile-Glu-Thr-Asp; JC: 1: 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide; LEHD: Leu-Glu-His-Asp; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NAC: N-acetyl-L-cysteine; PARP: poly (ADP-ribose) polymerase; PBS: Phosphate-buffered saline; PI: Propidium Iodide; pNA: p-nitroaniline; ROS: Reactive oxygen species; SD: Standard deviation; SDS: Sodium-dodecyl sulfate; tBid: Truncated Bid; TRAIL: TNF-related apoptosis-inducing ligand


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed730    
    Printed20    
    Emailed0    
    PDF Downloaded5    
    Comments [Add]    

Recommend this journal