Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 14  |  Issue : 57  |  Page : 434-439

Chemoprotective potential of zingerone (vanillyl acetone) in cyclophosphamide-induced hepatic toxicity


1 Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Science & Technology (SKUAST-K), Srinagar, Jammu and Kashmir, India
2 Divison of Veterinary Pathology, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Science & Technology (SKUAST-K), Srinagar, Jammu and Kashmir, India
3 RAKCOPS, RAK Medical & Health Sciences University, Ras AL Khaimah, UAE

Correspondence Address:
Manzoor-ur- Rahman Mir
Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agriculture Science and Technology-Kashmir, Alustang, Shuhama, Srinagar - 190 006, Jammu and Kashmir
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_170_16

Rights and Permissions

Introduction: Cancer is one of the lethal diseases in the global world. Proliferation of cancer cells is commonly inhibited by chemotherapeutics. Cyclophosphamide (CP) is an alkylating chemotherapeutic agent often used for treatment of various types of cancers, but it is full of side effects which in turn lead to organ toxicity. Zingerone, a polyphenolic alkanone found in ginger, has strong antioxidant potential and causes extensive scavenging of free radicals and offers defense against oxidative stress. Twenty-four adult male Wistar rats were divided into four groups, six rats in each group. Materials and Methods: Group I (control), Group II (CP, 2 mg/kg bwt), Group III (cotreatment with zingerone at the dose of 50 mg/kg bwt and CP at the dose of 2 mg/kg bwt), and Group IV (pretreatment of zingerone at the dose of 50 mg/kg bwt for 7 days and CP at the dose of 2 mg/kg bwt for next 7 days). Results: CP significantly increased the level of hepatic marker enzymes such as alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase, drastically caused alteration in lipid profile and deficiency in antioxidant defense mechanism by decreasing the activities of antioxidant enzymes such as catalase, glutathione, glutathione-S-transferase, and glutathione peroxidase. This was accompanied by subsequent increase in lipid peroxidation, nitrite production, and marked DNA damage. Conclusion: The restoration of hepatic markers, amelioration of lipid profile, and improvement of antioxidant status and DNA damage by pre- and co-treatment with zingerone clearly indicate the ameliorative potential of zingerone against CP-induced organ toxicity and oxidative stress. The protective potential of zingerone may be attributed to its strong antioxidant activity. Abbreviations used: CP: Cyclophosphamide; ALT: Alanine transaminase; AST: Aspartate transaminase; ALP: Alkaline phosphatase; CAT: Catalase; GSH: Reduced glutathione; ROS: Reactive oxygen species; SOD: Superoxide dismutase; LPO: lipid peroxidation; MDA: Malonaldehyde; GPX: Glutathione peroxidase.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed548    
    Printed7    
    Emailed0    
    PDF Downloaded5    
    Comments [Add]    

Recommend this journal