ORIGINAL ARTICLE |
|
Year : 2018 | Volume
: 14
| Issue : 57 | Page : 377-383 |
|
Antidiabetic, toxicological, and metabolomic profiling of aqueous extract of Cichorium intybus seeds
Kailash Chandra1, Washim Khan2, Sujata Jetley1, Sayeed Ahmad2, SK Jain1
1 Departments of Biochemistry and Pathology, HIMSR, Jamia Hamdard, New Delhi, India 2 Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
Correspondence Address:
S K Jain Department of Biochemistry,
HIMSR, Jamia Hamdard, New Delhi - 110 062 India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/pm.pm_583_17
|
|
Background: Cichorium intybus has a wide range of therapeutic applications in Indian traditional systems of medicine, especially in metabolic disorders. Objective: To evaluate the toxicity profile and to investigate the antidiabetic, antihyperlipidemic, and antioxidative efficacy of C. intybus seeds in Wistar rats. Materials and Methods: The aqueous extract of seeds was prepared by decoction, and its quality control analysis was carried out by thin-layer chromatography and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) fingerprinting. Wistar rats were fed with high-fat diet for 5 weeks followed by a single dose of streptozotocin intraperitoneally to induce diabetes. The protective group of rats was given aqueous extract during and after the induction of type 2 diabetes mellitus. Further, repeated dose 28-day (subacute) and repeated dose 90-day (chronic) toxicity studies were conducted as per the OECD guidelines. Results: A total of 18 metabolites have been tentatively identified by UPLC-MS profiling in aqueous extract of C. intybus seeds. No significant changes in mortality and biochemical parameters have been observed during toxicity studies. Moreover, administration of the extract to a protective group of diabetic rats attenuated serum glucose and triglyceride levels by 52.7% and 65.3%, respectively, supported by similar results for parameters related to insulin resistance and oxidative stress. The beneficial effect of extract has also been confirmed through in silico screening. Conclusion: C. intybus can be used as a natural dietary supplement for the prevention and management of diabetes and can be explored to develop a potent phytopharmaceutical for diabetes.
Abbreviations used: AECIS: Aqueous extract of Cichorium intybus seeds; HOMA-IR: Homeostatic model assessment of insulin resistance; OGTT: Oral glucose tolerance test; TLC: Thin-layer chromatography; UPLC-MS: Ultra-performance liquid chromatography-mass spectrometry.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|