Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 14  |  Issue : 57  |  Page : 340-345

Bio-based synthesised and characterized monodispersed Curcuma longa silver nanoparticles induces targeted anticancer activity in breast cancer cells


1 Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India
2 Department of Radiotherapy, KGMU, Lucknow, Uttar Pradesh, India

Correspondence Address:
Eram Sheikh
Department of Zoology, University of Lucknow, Lucknow - 226 007, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_71_18

Rights and Permissions

Background: Among the various metal nanoparticles, plant extract-based silver nanoparticles are gradually getting preference because the bioreduction potential of plant extracts is much faster for silver ions. The silver nanoparticles have the bactericidal activity and have shown to possess anticancer potential for developing effective and safe novel therapeutic agents. Objectives: The objective of the study was to synthesize Curcuma longa silver nanoparticles for the induction of anticancer activity in breast cancer cell. Materials and Methods: The 20 ml and 10 ml of C. longa stock extract were mixed with 10 ml and 10 μl of AgNO3solution (A) 1 mM and (B) 1M, respectively; reduction process initiates the formation of nanoparticles as detected by color change of AgNO3from brown to dark brown; thereafter, characterization done by ultraviolet–visible spectrophotometer, Scanning electron microscope, and transmission electron microscopy. Results: The synthesized and characterized C. longa silver nanoparticles induce targeted anticancer activity in breast cancer cells. Abbreviations used: μl: Microlitre; μg: Microgram; mM: Milli Molar; M: Molar; rpm: Revolution per minute; IC50: Inhibitory concentration at which 50% cells get died; PBS: Phosphate-buffered saline solution; DMSO: Dimethylsulfoxide; MTT: 3-4,5-dimethyl thiazole-2-yl)-2, 5-diphenyl tetrazolium bromide; DMEM: Modified eagle's media; DPPH-2,2-diphenyl-1 picrylhydrazyl; Abs: Absorbance.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1203    
    Printed24    
    Emailed0    
    PDF Downloaded5    
    Comments [Add]    

Recommend this journal