Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 14  |  Issue : 55  |  Page : 8-13

Hydroalcoholic extract of Argyreia speciosa roots ameliorates HCl-mediated acute lung injury in mice


1 Department of Biochemistry, Panjab University, Chandigarh, India
2 University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India

Correspondence Address:
Amarjit Singh Naura
Department of Biochemistry, Panjab University, Chandigarh - 160 014
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_324_17

Rights and Permissions

Objective: Argyreia speciosa is a popular Indian medicinal plant. It has long been used in the traditional Ayurvedic Indian medicine for various diseases. The present work was designed to evaluate anti-inflammatory potential of hydroalcoholic extract of A. speciosa roots using mouse model of HCl-induced acute lung injury (ALI) by conducting a dose–response studies. Materials and Methods: The extract was given once orally at a dose of 50, 100, or 200 mg/kg b.wt. 90 min before HCl administration. Lung tissue of different group of mice was analyzed for the recruitment of inflammatory cells, redox status, and mRNA expression of pro-inflammatory genes to evaluate the anti-inflammatory effects of the extract. Results: Our results showed that the extract reduced HCl-induced lung inflammation in a dose-dependent manner. The neutrophil numbers in bronchoalveolar lavage fluid (BALF) were almost completely abrogated at a dose of 100 mg/kg b.wt. The severe reduction in neutrophils was accompanied with reduced pulmonary edema as the total protein content in BALF was found to be decreased substantially. In addition, the extract prevented the HCl-mediated oxidative stress in lungs as reflected by the normalization of levels of reactive oxygen species, malondialdehyde, redox status, and catalase activity. Extract seems to blunt the activity of redox-sensitive transcription factor nuclear factor-kappa B (NF-κB) as it suppressed the gene expression of ALI-linked pro-inflammatory cytokines, namely, interleukin-1 β and tumor necrosis factor-alpha. Conclusion: Overall, our data provide evidence that cocktail of natural phytochemicals present in hydroalcoholic extract of A. speciosa protects against HCl-induced ALI in mice potentially by curbing oxidative stress and consequent activation of NF-κB in the tissue. Abbreviations used: ALI: Acute lung injury, BALF: Bronchoalveolar lavage fluid, IL-1: Interleukin-I, TNF-a: Tumor necrosis factor-alfa, ROS: Reactive oxygen species, MDA: Malondialdehyde


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed647    
    Printed15    
    Emailed0    
    PDF Downloaded9    
    Comments [Add]    

Recommend this journal