Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 14  |  Issue : 55  |  Page : 3-7

Evaluation and understanding the molecular basis of the antimethicillin-resistant Staphylococcus aureus activity of secondary metabolites isolated from Lamium amplexicaule


1 Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Department of Natural Products, School of Pharmacy, Almaarefa Colleges for Science and Technology, Riyadh, Saudi Arabia
2 Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
3 Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
4 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt

Correspondence Address:
Arafa Musa
Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_541_17

Rights and Permissions

Background: The genus Lamium includes about forty annual or perennial plants distributed everywhere, it has significant biological activities including antimicrobial, antioxidant and antischistosomal effects. However, no detailed reports about the antimicrobial (Anti-MRSA) effect of the isolated metabolites. Objective: Studying the mechanism of action of the antimicrobial (Anti-MRSA) activity of the isolated metabolites. Materials and Methods: The EtOAc extract of L. amplexicaule was subjected to different chromatographic methods to isolate the secondary metabolites, and the isolated compounds were elucidated by spectroscopic techniques. The antimicrobial activity against strains of microorganisms was performed according to Minimum Inhibitory Concentration, the study of Anti-MRSA activity was explained by molecular docking against CrtM enzyme. Results: Phytochemical study of the aerial parts of L. amplexicaule resulted in the isolation of 5 known compounds; phytol (1), b-sitosterol (2), isorhamnetin (3), 3,4-dihydroxy-methyl benzoate (4), and hydroxynervonic acid (5). The antimicrobial activity of the isolated metabolites revealed that compounds 1, 3, and 4 have pronounced antimethicillin-resistant Staphylococcus aureus (MRSA) effect. Conclusion: These all known compounds were firstly isolated from L. amplexicaule. Three of them showed pronounced anti- MRSA effect, The mechanism of action against dehydrosqualene synthase enzyme was established. In addition, the study of molecular determinates of activity of these new scaffolds as anti-MRSA has a great importance for the development of new anti-MRSA candidates. Abbreviations used: L. amplexicaule: Lamium amplexicaule; CrtM: Dehydrosqualene synthase; MRSA: Methicillin-resistant strains of S. aureus; STX: Staphyloxanthin; UV: Ultraviolet-visible; TLC: Thin-layer chromatography; ESI/MS: Electrospray mass spectrometry; VLC: Vacuum liquid chromatography; L: Liter


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed525    
    Printed12    
    Emailed0    
    PDF Downloaded9    
    Comments [Add]    

Recommend this journal