Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 14  |  Issue : 54  |  Page : 203-206

Study on extraction and purification of apigenin and the physical and chemical properties of its complex with lecithin


1 Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, College of Chemistry and Environmental Sciences, Yili Normal University, Yining, 835000, PR China
2 School of Food Engineering and Biotechnology, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China

Correspondence Address:
Yan Zhang
No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin - 300 457
PR China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_159_17

Rights and Permissions

Background: The apigenin has important medicinal value. However, the low solubility of apigenin in water significantly reduced its application. Objective: In this study, the apigenin was extracted, and the complex of apigenin and lecithin was obtained by the solvent method and its physical and chemical properties were investigated. Materials and Methods: The apigenin was extracted from the leaves of Adinandra nitida. Afterward, its apigenin was obtained by hydrolysis and recrystallization. The solvent method was used to synthesis the complex of apigenin and lecithin. Tetrahydrofuran was used as the solvent. The physicochemical properties of the complex were investigated by the various methods such as ultraviolet (UV)-visible spectrometry, infrared spectrometry (IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffractometry. Results: No distinct difference was examined between the complex and physical mixture according to the UV analysis. While the result of Fourier transform-IR analysis indicated the characteristic absorption peaks of apigenin was subdued by the absorption peaks of lecithin. SEM showed the irregular form of the complex. In the DSC thermogram of the complex, the characteristic endothermic peak belonging to apigenin disappears, and the apparent amorphous properties are shown in the X-ray X-diffractograms of the complex. Conclusion: The synthetic process does not break the conjugated structure of apigenin. The complex is held together by Hydrogen bonding and van der Waals force and processes new physical and chemical characteristics. The industrial application of apigenin might be enhanced by the increase of the bioavailability. Abbreviation used: SLA: The synthesis of the complex of soy lecithin and apigenin, PMSLA: The manufacture of a physical mixture of soybean lecithin and apigenin, UV: Ultraviolet, IR; Infrared Radiation, FT-IR: Fourier transform infrared, NMR: Nuclear magnetic resonance, SEM: Scanning electron microscopy, DSC: Differential scanning calorimetry, XRD: X-ray diffractometry.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1456    
    Printed43    
    Emailed0    
    PDF Downloaded8    
    Comments [Add]    

Recommend this journal