Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 14  |  Issue : 54  |  Page : 149-154

In vitro induction and generation of tetraploid plants of Sophora tonkinensis Gapnep


1 Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, Guangxi, People's Republic of China
2 Inner Mongolia Research Center of Characteristic Medicinal Plants Cultivation and Protection Engineering Technology , Baotou Medical College, Baotou 014060, Inner Mongolia, People's Republic of China
3 Department of Food and Chemical Engineering, Lushan College of Guangxi University of Science and Technology, Liuzhou 545616, Guangxi, People's Republic of China
4 Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, Guangxi; Inner Mongolia Research Center of Characteristic Medicinal Plants Cultivation and Protection Engineering Technology , Baotou Medical College, Baotou 014060, Inner Mongolia, People's Republic of China

Correspondence Address:
Kun Hua Wei
Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, Guangxi
People's Republic of China
Min Hui Li
Inner Mongolia Research Center of Characteristic Medicinal Plants Cultivation and Protection Engineering Technology, Baotou Medical College, Baotou 014060, Inner Mongolia
People's Republic of China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_170_17

Rights and Permissions

Background: Sophora tonkinensis Gapnep. is an important medical plant in China. Early researches of S. tonkinensis were focused on rapid propagation and quality analysis of in vitro tissue culture plantlet, and still no research focuses on the plant breeding of and there were no excellent varieties for artificial cultivation of S. tonkinensis. Objective: To set up a method to generate and select the best varieties of S. tonkinensis by polyploid breeding after induction by colchicine treatment. Materials and Methods: The adventitious buds were submerged in different concentrations of aqueous colchicine solution for different lengths of time to induce polyploidy in the plants, and the induced buds were identified by root-tip chromosome determination and leaf characteristics comparison. The contents of matrine and oxymatrine of radix ex rhizoma in 13 selected tetraploid lines were collected after 90 days in vitro rooting culture and were evaluated to provide evidence of good qualities of tetraploid S. tonkinensis. Results: The results showed that the highest percentage of tetraploid induction was 23.33% and occurred in the 0.2% (w/v) colchicine treatment for 30 h. Fifty lines of tetraploid plants were obtained and 12 of the 13 selected tetraploid lines exhibited higher productivity of total contents of matrine and oxymatrine when compared to controls. Conclusion: The data demonstrate that polyploidy induction can be beneficial for improving the medicinal value of S. tonkinensis. Abbreviations used: MS medium: Murashige and Skoog medium; BAP: 6-benzylaminopurine; NAA: A-naphthaleneacetic acid; IAA: Indole-3-acetic acid; KT: Kinetin; IBA: Indole-3-butyric acid; ABT: Rooting power.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed128    
    Printed2    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal