Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 52  |  Page : 881-885

Simultaneous quantification of forskolin and Iso-forskolin in Coleus forskohlii (Wild.) Briq. and identification of elite chemotype, collected from eastern ghats (India)


1 Division of Pharmacognosy and Ethnopharmacology, CSIR-National Botanical Research Institute; Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
2 Division of Pharmacognosy and Ethnopharmacology, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
3 Division of Central Instrumentation Facility, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
4 Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
5 National Agricultural Science Fund, ICAR, KAB-I, PUSA Campus, New Delhi, India

Correspondence Address:
Sharad Srivastava
Division of Pharmacognosy and Ethnopharmacology, CSIR-National Botanical Research Institute, Lucknow - 226 001, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.224336

Rights and Permissions

Background: Coleus forskohlii is a well-known industrially important medicinal plant, for its high forskolin content. Objective: A simple, selective, and sensitive high-performance thin layer chromatography (HPTLC) method was developed and validated for simultaneous quantification of forskolin and iso-forskolin in C. forskohlii germplasm collected from the Eastern Ghats, India. Materials and Methods: Chromatographic separation of the targeted marker(s) was obtained on precoated silica plates using toluene: ethyl acetate: methanol (90:30:0.5, v/v/v) as the mobile phase. Results: Densitometric quantification of forskolin and iso-forskolin was carried out at 545 nm. Forskolin and iso-forskolin were identified by comparing the ultraviolet spectra of standard and sample track at Rfof 0.64 ± 0.02 and 0.36 ± 0.01, after derivatization with anisaldehyde sulfuric acid reagent. The linearity of both the analytes was obtained in the range of 300–1200 ng/spot with the regression coefficient (R2) of 0.991 and 0.986. Recovery of analyte (s) at three levels, namely, 100, 150, and 200 ng/spot was found to be 100.46% ± 0.29%, 99.64% ± 0.33%, 100.02% ± 0.76% and 99.76% ± 0.62%, 99.56% ± 0.35%, 100.02% ± 0.22%, respectively, for forskolin and iso-forskolin. The content of forskolin and iso-forskolin varies from 0.046% to 0.187% and 0.002% to 0.077%, respectively (dry weight basis), the maximum content of both the markers was found in NBC-31, from Thakurwada, Maharashtra. Conclusion: The developed HPTLC method was linear, accurate, and reliable as per the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines. The study aids in the identification of elite chemotype for commercial prospection of industrially viable medicinal crop.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed930    
    Printed38    
    Emailed0    
    PDF Downloaded21    
    Comments [Add]    

Recommend this journal