Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 


 
  Table of Contents  
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 52  |  Page : 840-844  

Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity


Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India

Date of Submission12-Jun-2017
Date of Acceptance05-Jul-2017
Date of Web Publication31-Jan-2018

Correspondence Address:
Rahul Shrivastava
Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal - 462 003, Madhya Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.224330

Rights and Permissions
   Abstract 


Background: Silver nanoparticles have excellent medical and nonmedical properties and application compared with other metallic nanoparticles. In the present study, fresh leaves of Syngonium podophyllum have been used for synthesis of silver nanoparticles. Objectives: In this study, we evaluated the anticandidal activity of S. podophyllum and the synthesized nanoparticles. Materials and Methods: In this study, simple and economical procedure was adopted for silver nanoparticles synthesis. S. podophyllum leaf was processed to obtain aqueous extract as a biological material for nanoparticles production. Synthesized nanoparticles were characterized by ultraviolet (UV) spectroscopy, X-ray diffraction (XRD), and atomic force microscopy. Results: The progress of silver nanoparticles biosynthesis from leaf extract of S. podophyllum was observed by UV-visible spectroscopy. The peaks maxima were observed at 455 nm for silver nanoparticles synthesized from the leaf extracts of S. podophyllum. XRD diffractogram showing Bragg peaks of face-centered cubic crystalline elemental silver confirming the formation of silver nanoparticles. The minimal inhibitory concentration values of aqueous extracts of S. podophyllum leaf were estimated by broth dilution method and found that the extracts exhibited antifungal activity against Candida albicans. The antifungal activity was also determined using disk diffusion method by measuring the diameter for zone of inhibition. Conclusion: S. podophyllum leaf extract shows strong antifungal activity against C. albicans. S. podophyllum could be applied in the fields of medical and pharmaceuticals for formulation of new drugs.
Abbreviation used: AgNO3: Silver nitrate, MIC: Minimum inhibitory concentration, MTCC: Microbial type culture collection, SPR: Surface plasmon resonance, UV: Ultraviolet, XRD: X-ray diffraction

Keywords: Anticandidal activity, atomic force microscopy, nanoparticles, spectroscopy, Syngonium podophyllum


How to cite this article:
Yasir M, Singh J, Tripathi MK, Singh P, Shrivastava R. Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity. Phcog Mag 2017;13, Suppl S4:840-4

How to cite this URL:
Yasir M, Singh J, Tripathi MK, Singh P, Shrivastava R. Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity. Phcog Mag [serial online] 2017 [cited 2019 Nov 22];13, Suppl S4:840-4. Available from: http://www.phcog.com/text.asp?2017/13/52/840/224330





Summary

  • The synthesis, characterization, and antifungal activities of silver nanoparticle from Common arrowhead house plant.
  • The silver nanoparticles were confirmed to be spherical in shape.
  • The antifungal activities of the confirmed their therapeutic potential.



   Introduction Top


Diseases are treated using medicinal plants traditionally. Infectious skin diseases are specially caused by dermatophytes and Candida spp. Mycoses is a serious public health problem ranging from superficial to deep infections. Folklore information was reported for antimicrobial properties on the pathogenic fungi.[1]

Silver is extensively used in nanosystems and employed in various biomedical purposes. Silver nanoparticles have excellent medical and nonmedical properties and applications when compared with other metal nanoparticles.[2] The green approach of nanoparticles synthesis possesses reduced or no toxicity and number of plants and herbal extracts has been reported to be involved in such synthesis.[3] Plant extracts contain number of secondary metabolite which plays a critical role during the nanoparticle synthesis by acting as reducing or capping agents.[4] Studies have shown that silver nanoparticles are highly stable and toxic to bacteria, fungus, and viruses.

Syngonium podophyllum (Araceae) is commonly a houseplant, a parasitic vine with arrowhead leaf. S. podophyllum leaf is used against sore, dry skin, fungal infection, itching, rashes, and bruises.[5]

Various unorganized parts of the plants have been utilized for the synthesis of silver nanoparticles. In the present study, the fresh leaves of S. podophyllum have been used for the synthesis of silver nanoparticles. We evaluated the anticandidal activity of S. podophyllum and the synthesized nanoparticles.


   Materials and Methods Top


Materials

Silver nitrate was purchased from MERK India Ltd., Mueller–Hinton Media and Sabouraud dextrose agar media were procured from HIMEDIA India Ltd., and Candida albicans MTCC 183 was obtained from the Institute of Microbial Technology, Chandigarh, India, and all other materials used were of analytical grade.

Preparation of plant leaf extracts

The leaf of S. podophyllum was collected from the campus of Maulana Azad National Institute of Technology, Bhopal, and washed with deionized water [Figure 1]d. The fresh leaves of S. podophyllum (4 g) were crushed with the help of pestle mortar, mixed in 200 ml of deionized water, boiled in a water bath for 30 min, and allowed to cool. The extracts were filtered using Whatman filter paper after filtration equal amount of ethanol is added to precipitate the mucilage present in the leaf extract; further, the extract was centrifuged at 7000 rpm for 10 min to make it mucilage free. The supernatant was collected and kept at 4°C until used.
Figure 1: (a) Ultraviolet-visible absorption spectra of silver nanoparticles synthesized at 80°C from 40 ml extract with different concentrations of silver nitrate solutions. Inset showing color change of reaction mixture. (b) Ultraviolet-visible absorption spectra of silver nanoparticles synthesized at 80°C by treating 30 mM silver nitrate solution with different extract volume (ml). (c) Ultraviolet-visible absorption spectra of silver nanoparticles synthesized at 80°C by treating 30 mM silver nitrate with 40 ml extract solution at different time intervals. (d) Syngonium podophyllum plant

Click here to view


Biosynthesis and characterization of silver nanoparticles

The nanoparticles were biosynthesized by adding 6.0 ml of silver nitrate solution (1 M) with 40 ml of extract and 154 ml of deionized water. The reaction mixture was observed for color change depending on parameter studied such as time, silver nitrate, and extract concentration at 80°C. The resultant reddish brown-colored reaction mixture was then centrifuged at 12,000 rpm for 10 min (REMI, India). The pellet obtained was washed thrice with deionized water and finally with acetone. The resultant pellet was dried and stored for further characterizations. The preparation of silver nanoparticles was characterized by ultraviolet-visible (UV-Vis) spectrophotometer (Themoscientific SpectraScan) in the wavelength range of 340–900 nm. The surface morphology and particle size distribution of the S. podophyllum nanoparticles were examined using an atomic force microscope (AFM, NDMDT) with a conducting P (n)-doped silicon tip under normal atmospheric condition in semicontact mode. The X-ray diffraction (XRD) patterns of silver nanoparticles were obtained using X-ray diffractometer (PANalytical Empyrean XRD) with diffraction angle in the range of 20°–80°.

Screening of anticandidal activity

The C. albicans was subjected to incubation at 35°C for 48 h and maintained on sabouraud dextrose agar. The working suspension of C. albicans was prepared as previously described by Ahmad and Beg.[6]

The minimum inhibitory concentration was determined by broth dilution method. S. podophyllum leaf extract and S. podophyllum nanoparticles was dissolved in dimethyl sulfoxide and dilutions were prepared at concentration range from 5 to 1000 μg/ml. The medium containing different concentration of plant extract was inoculated with 0.1 ml of fungal culture and incubated at 35°C for 48 h. The results were compared with those of the noninoculated broth and with media inoculum without extract. Antifungal susceptibility testing was performed by disk diffusion method using Mueller–Hinton agar + 2% glucose and 0.5 μg/ml methylene blue dye [7] concentration ranging from 3.125 to 50 μg.


   Results Top


Biosynthesis of iron nanoparticles

S. podophyllum silver nanoparticles synthesis were measured by observing surface plasmon resonance (SPR) by UV spectroscopy. [Figure 1]a shows the progress of biosynthesis when the reaction mixture was incubated at different AgNO3 concentration. After confirming the AgNO3 concentration, the amount of extract required for nanoparticle synthesis was determined [Figure 1]b. Time required for the nanoparticle synthesis was also determined [Figure 1]c. The SPR peaks were observed at 455 nm for the synthesized silver nanoparticles.

X-ray diffraction

We observed various Bragg peaks (angle 2 θ), sets of lattice planes which may be indexed to the (111), (200), (220), and (311) [Figure 2]a. Average crystallite size of nanoparticles was found to be 10.41 nm using Debye–Scherrer formula.
Figure 2: (a) X-ray diffraction patterns of synthesized AgNPs using leaf extract of Syngonium podophyllum. (b) Effect of silver nanoparticles of Syngonium podophyllum on Candida albicans at different concentration. (c) Zone of inhibition against Candida albicans at different concentration of Syngonium podophyllum nanoparticles

Click here to view


Debye–Scherrer formula: D = K λ/β Cosθ.

D = mean diameter of nanoparticles

β = the full width at half-maximum value of XRD diffraction line

λ = the wavelength of X-ray radiation source 0.15405 nm

θ = the half diffraction angle–Bragg angle

K = the Scherrer constant with the value 0.9.

Atomic force microscopy

The three-dimensional (3D) surface morphology and size analysis were obtained from AFM, shape and size distribution of the nanoparticles were done using MNOVA software using the line analysis measurement in semi contact mode [Figure 3]. Particles with 40 nm size were found to be present in maximum quantity and the shapes of the particles are spherical.
Figure 3: (a) Grains of nanoparticles observed by atomic force microscope for particles size distribution analysis. (b) Particle size distribution pattern of synthesized nanoparticles (c and d) Shape of synthesized silver nanoparticles observed using atomic force microscopy

Click here to view


Anticandidal activity of Syngonium podophyllum and its nanoparticles

The S. podophyllum leaf extract and its nanoparticles were tested against C. albicans, a causative agent of cutaneous candidiasis by standard broth dilution method and well-diffusion assay.

The minimal inhibitory concentrations of aqueous extracts of S. podophyllum leaf were estimated by broth dilution method and were found that the extracts exhibited antifungal activity against C. albicans at a concentration of 1.8 μg whereas that of S. podophyllum silver nanoparticles is 0.2 μg, respectively. The antifungal activity of S. podophyllum silver nanoparticles was again determined using the disk diffusion method by measuring the diameter of zone of inhibition [Figure 2]b.


   Discussion Top


The progress of silver nanoparticles biosynthesis from the leaf extracts of S. podophyllum was observed by UV-Vis spectroscopy. The formation of nanosilver from silver nitrate was observed by the occurrence of brown color change which was measured spectrophomertically. The SPR property is responsible for the occurrence of the absorption peak.[8]

Various parameters have been optimization for the biosynthesis of nanoparticles such as the extract concentration, AgNO3 concentration, and incubation time. The biosynthesis at different AgNO3 concentration, namely, 20, 25, 30, 35, and 40 mM and incubation time, namely, 0–70 min was shown in [Figure 1]a. After confirming the AgNO3 concentration, i.e., 30 mM required for nanoparticles synthesis, the amount of extract required for nanoparticle synthesis was determined.

The response mixture was incubated at 80°C and the absorbance was measured at exclusive time intervals till the prevalence of a wide SPR was observed. The absorption peaks have been determined at 455 nm for the silver nanoparticles synthesized from response mixture consisting 40 mL leaf extracts of S. podophyllum at incubation time of 70 min. The crystalline structure of nanoparticles was identified by XRD technique showing sets of lattice planes indexed to the (111), (200), (220), and (311), respectively.[9] Average crystallite size of nanoparticles was found to be 10.41 nm using Debye–Scherrer formula [Table 1]. The 3D surface morphology and size evaluation have been obtained from AFM, shape, and size measurement of the nanoparticles had been done by utilizing MNOVA AFM software (NT-MDT Spectrum Instruments, Russia) making use of the line analysis mode. Particles with 40 nm size were found to be present in maximum quantity and the shapes of the particles are spherical.
Table 1: Average crystallite size of synthesized nanoparticles using Debye-Scherrer formula

Click here to view


The aqueous extract exhibited strong antifungal activity against C. albicans. The antifungal ability was again determined making use of the disk diffusion protocol with the aid of measuring the zone of inhibition [Figure 2]c. Maximum diameter of 15.60 mm was observed at concentration of 50 μg silver nanoparticles.

The bioactivity of plant extracts was due to the presence of secondary metabolites. New antimicrobial medicinal molecules are now required and future optimization of these may permit the progress of applicable antimicrobial agent.[10] Approximately twenty different species of Candida are reported, of which C. albicans is responsible for many infections ranging from severe to mild candidiasis.[11] Silver nanoparticles synthesized through biosynthesis approach have been reported to have activity against pathogenic microorganisms. The exact mechanisms of silver nanoparticles antimicrobial activity are still under investigation. It is reported that nucleic acids and Ag+ ions form complexes which may interact with the nucleosides/proteins or silver ions may accumulate inside the membrane and penetrate into the cells causing damage to cell membranes. Silver ions can also interact with the purine and pyrimidine base pairs thereby disrupting the hydrogen bonding resulting in the denaturing of the DNA molecule.[12]


   Conclusion Top


To conclude, S. podophyllum leaf extract has antifungal activity against C. albicans. Further, we have used low cost, ecofriendly, and quick method for the synthesis of silver nanoparticles using S. podophyllum. These bioinspired nanoparticles displayed very potent antifungal activity toward pathogenic fungi. Thus, S. podophyllum an ornamental plant has been effectively used for the synthesis of silver nanoparticles, and it could be applied in the fields of medical healthcare for the designing of newer drugs.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Kalidindi N, Nandeep R, Swetha S, Kalidindi B. Antifungal and antioxidant activities of organic and aqueous extracts of Annona squamosa linn. Leaves. J Food Drug Anal 2015;23:795-802.  Back to cited text no. 1
[PUBMED]    
2.
Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM, et al. Nanosilver particles in medical applications: Synthesis, performance, and toxicity. Int J Nanomedicine 2014;9:2399-407.  Back to cited text no. 2
    
3.
Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res 2016;7:17-28.  Back to cited text no. 3
[PUBMED]    
4.
Prasad R. Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014:2014;8.  Back to cited text no. 4
    
5.
Kumar S, Kumar R, Dwivedi A, Pandey AK.In vitro antioxidant, antibacterial, and cytotoxic activity and in vivo effect of Syngonium podophyllum and Eichhornia crassipes leaf extracts on isoniazid induced oxidative stress and hepatic markers. Biomed Res Int 2014;2014:459452.  Back to cited text no. 5
[PUBMED]    
6.
Ahmad I, Beg AZ. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 2001;74:113-23.  Back to cited text no. 6
[PUBMED]    
7.
Gandhi TN, Patel MG, Jain MR. Antifungal susceptibility of Candida against six antifungal drugs by disk diffusion method isolated from vulvovaginal candidiasis. IJCRR 2015;7:20-5.  Back to cited text no. 7
    
8.
Parsons JG, Peralta-Videa JR, Gardea-Torresdey JL. Use of plants in biotechnology: Synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Dev Environ Sci 2007;5:463-85.  Back to cited text no. 8
    
9.
Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S, et al. Synthesis of silver nanoparticles using leaves of Catharanthus roseus linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2012;2:574-80.  Back to cited text no. 9
    
10.
Savoia D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol 2012;7:979-90.  Back to cited text no. 10
[PUBMED]    
11.
Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol 2001;9:327-35.  Back to cited text no. 11
[PUBMED]    
12.
Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 2016;7:1831.  Back to cited text no. 12
[PUBMED]    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1]



 

Top
   
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
     Introduction
   Materials and Me...
     Results
     Discussion
     Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1158    
    Printed29    
    Emailed0    
    PDF Downloaded16    
    Comments [Add]    

Recommend this journal