Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 51  |  Page : 504-511

Optimization of polysaccharide ultrasonic extraction conditions using purple sweet potato tubers based on free radical scavenging and glycosylation inhibitory bioactivities


1 Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006; Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, People's Republic of China
2 Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China

Correspondence Address:
Chunyan Yan
Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006
People's Republic of China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.211044

Rights and Permissions

Background: The purple sweet potato, Ipomoea batatas, belongs to the family Convolvulaceae. It is one of the most widely consumed tubers in Asia and is found in many dishes. Many people with diabetes eat purple sweet potato tubers to help reduce blood glucose in China. Objective: To predict the ultrasonic conditions for getting the optimal in vitro antioxidant and antiglycated activity of ultrasonic extracted polysaccharides from purple sweet potato (I. batatas) tubers, the artificial neural network (ANN) regression models was used in this study. Materials and Methods: The antioxidant activity of polysaccharides was quantified by evaluating the hydroxyl radical scavenging effect after ultrasonic extraction, and the data were used in conjunction with optimized extraction conditions to train the predictive ANN models. Results: The following conditions were predicted to yield optimal hydroxyl scavenging activity: 200 W, 22°C, and 40 min. In contrast, conditions of 230 W, 22°C, and 50 min yielded the greatest inhibitory effect on albumin nonenzymatic glycosylation. The accuracy and predictive ability of the models ranged from good to excellent, as indicated by R2 values ranging from 0.953 to 0.998. Conclusion: The results of the present study showed that ANN predictive models are useful in ultrasonic processing, which can rapidly and accurately predict the optimum extraction conditions for polysaccharides based on their antioxidant and antiglycated activities. In addition, the results of the present study suggest that the consumption of sweet potatoes may help reduce free radicals in the body and prevent or treat diabetes. Abbreviations used: IBP: Polysaccharide of Ipomoea batatas; RSM: response surface methodology; ANN: Artificial neural network; BSA: Bovine serum albumin.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1969    
    Printed26    
    Emailed0    
    PDF Downloaded25    
    Comments [Add]    

Recommend this journal