Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 50  |  Page : 266-272

Resolving identification issues of Saraca asoca from its adulterant and commercial samples using phytochemical markers


1 Regional Medical Research Centre, Indian Council of Medical Research; KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, India
2 Regional Medical Research Centre, Indian Council of Medical Research, Belagavi, Karnataka, India
3 Dr. Prabhakar Kore Basic Science Research Centre, KLE University; Department of Pharmacognosy, KLE University's College of Pharmacy, Belagavi, Karnataka, India
4 Dr. Prabhakar Kore Basic Science Research Centre, KLE University, Belagavi, Karnataka, India
5 Regional Medical Research Centre, Indian Council of Medical Research; Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India

Correspondence Address:
Sandeep Ramachandra Pai
Amity Institute of Biotechnology, Amity University, Mumbai - 410 206, Maharashtra
India
Subarna Roy
Regional Medical Research Centre, Indian Council of Medical Research, Belagavi - 590 010, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_417_16

Rights and Permissions

Saraca asoca (Roxb.) De Wilde (Ashoka) is a highly valued endangered medicinal tree species from Western Ghats of India. Besides treating cardiac and circulatory problems, S. asoca provides immense relief in gynecological disorders. Higher price and demand, in contrast to the smaller population size of the plant, have motivated adulteration with other plants such as Polyalthia longifolia (Sonnerat) Thwaites. The fundamental concerns in quality control of S. asoca arise due to its part of medicinal value (Bark) and the chemical composition. Phytochemical fingerprinting with proper selection of analytical markers is a promising method in addressing quality control issues. In the present study, high-performance liquid chromatography of phenolic compounds (gallic acid, catechin, and epicatechin) coupled to multivariate analysis was used. Five samples each of S. asoca, P. longifolia from two localities alongside five commercial market samples showed evidence of adulteration. Subsequently, multivariate hierarchical cluster analysis and principal component analysis was established to discriminate the adulterants of S. asoca. The proposed method ascertains identification of S. asoca from its putative adulterant P. longifolia and commercial market samples. The data generated may also serve as baseline data to form a quality standard for pharmacopoeias. Abbreviations used: HPLC: High Performance Liquid Chromatography; RP-HPLC: Reverse Phase High Performance Liquid Chromatography; CAT: Catechin; EPI: Epicatechin; GA: Gallic acid; PCA: Principal Component Analysis.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1395    
    Printed20    
    Emailed0    
    PDF Downloaded16    
    Comments [Add]    

Recommend this journal