Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 49  |  Page : 84-89

Simultaneous determination of multiple ginsenosides in Panax ginseng herbal medicines with one single reference standard


1 Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
2 Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou 510006; Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, P.R. China

Correspondence Address:
Prof. Shumei Wang
Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006; Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006
P.R. China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_274_16

Rights and Permissions

Background: Root of Panax ginseng C. A. Mey (Renseng in Chinese) is a famous Traditional Chinese Medicine. Ginsenosides are the major bioactive components. However, the shortage and high cost of some ginsenoside reference standards make it is difficult for quality control of P. ginseng. Objective: A method, single standard for determination of multicomponents (SSDMC), was developed for the simultaneous determination of nine ginsenosides in P. ginsen g (ginsenoside Rg1, Re, Rf, Rg2, Rb1, Rc, Rb2, Rb3, Rd). Materials and Methods: The analytes were separated on Inertsil ODS-3 C18 (250 mm × 4.6 mm, 5 μ m) with gradient elution of acetonitrile and water. The flow rate was 1 mL/min and detection wavelength was set at 203 nm. The feasibility and accuracy of SSDMC were checked by the external standard method, and various high-performance liquid chromatographic (HPLC) instruments and chromatographic conditions were investigated to verify its applicability. Using ginsenoside Rg1as the internal reference substance, the contents of other eight ginsenosides were calculated according to conversion factors (F) by HPLC. Results: The method was validated with linearity (r2 ≥ 0.9990), precision (relative standard deviation [RSD] ≤2.9%), accuracy (97.5%–100.8%, RSD ≤ 1.6%), repeatability, and stability. There was no significant difference between the SSDMC method and the external standard method. Conclusion: New SSDMC method could be considered as an ideal mean to analyze the components for which reference standards are not readily available. Abbreviations used: DRT: Different value of retention time; F: Conversion factor; HPLC: High-performance Liquid Chromatography; LOD: Limit of detection; LOQ: Limit of quantitation; PD: Percent difference; PPD: 20(S)-protopanaxadiol; PPT: 20(S)-protopanaxatriol; RSD: Relative standard deviation; SSDMC: Single Standard for Determination of Multicomponents; TCM: Traditional Chinese Medicine.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1207    
    Printed20    
    Emailed0    
    PDF Downloaded16    
    Comments [Add]    

Recommend this journal