Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 12  |  Issue : 48  |  Page : 282-287

Preparation of sesquiterpenoids from Tussilago farfara L. by high-speed counter-current chromatography


1 College of Chemistry and Chemical Engineering, Chongqing University; Defense Key Disciplines Lab of Novel Micro-nano Devices and System Techonlogy, Chongqing, P.R. China
2 College of Chemistry and Chemical Engineering, Chongqing University; Defense Key Disciplines Lab of Novel Micro-nano Devices and System Techonlogy; International R and D Center of Micro-nano Systems and New Materials Technology, Chongqing, P.R. China
3 College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P.R. China

Correspondence Address:
Prof. Yi Xu
Chongqing University, Chongqing
P.R. China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.192196

Rights and Permissions

Background: Sesquiterpenoids, such as tussilagone, has effects of raising blood pressure, antiplatelet aggregation, and anti-inflammation activities, which is regarded as index compound for quality control of Tussilago farfara L. Objective: This study was aimed to obtain an effective method for fast isolation of sesquiterpenoids from T. farfara L. by high-speed counter-current chromatography (HSCCC). Materials and Methods: A solvent optimization method for HSCCC was presented, i.e., the separation factors of compounds after the K values of solvent system should be investigated. Results: A ternary solvent system of n-hexane:methanol:water (5:8:2, v/v/v) was selected and applied for the HSCCC, and 56 mg of tussilagone (2) was isolated from T. farfara L., along with two other sesquiterpenoids 5.6 mg of 2,2-dimethyl-6-acetylchromanone (1) and 22 mg of 14-acetoxy-7 β-(3'-ethyl cis-crotonoyloxy)-lα-(2'-methylbutyryloxy)-notonipetranone (3) by HSCCC with high purities. Their chemical structures were elucidated by liquid chromatography-mass spectrometry and nuclear magnetic resonance experiments. Conclusion: These results offered an efficient strategy for preparation of potentially health-relevant phytochemicals from T. farfara L., which might be used for further chemical research and pharmacological studies by preparative HSCCC. Abbreviations used: HSCCC: High-Speed Counter-Current Chromatography; LC-MS: Liquid Chromatograph-Mass Spectrometer; NMR: Nuclear Magnetic Resonance; TCM: Traditional Chinese Medicine; HPLC: High Performance Liquid Chromatography; ESI-MS: Electrospray Ionization Mass Spectrometry; PE: petroleum ether


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1093    
    Printed14    
    Emailed0    
    PDF Downloaded18    
    Comments [Add]    

Recommend this journal