Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 12  |  Issue : 46  |  Page : 181-194

High performance liquid chromatography-mass spectrometry analysis of high antioxidant australian fruits with antiproliferative activity against cancer cells


1 Environmental Futures Research Institute, Nathan Campus, Griffith University; School of Natural Sciences, Nathan Campus, Griffith University, Nathan, 4111 Queensland, Australia
2 School of Natural Sciences, Nathan Campus, Griffith University, Nathan, 4111 Queensland, Australia
3 Smart Water Research Centre, Griffith University, Gold Coast, 4222 Queensland, Australia

Correspondence Address:
Ian Edwin Cock
Environmental Futures Research Institute, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, Queensland 4111; School of Natural Sciences, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, Queensland 4111
Australia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.182178

Rights and Permissions

Background: High antioxidant capacities have been linked to the treatment and prevention of several cancers. Recent reports have identified several native Australian fruits with high antioxidant capacities. Despite this, several of these species are yet to be tested for anticancer activity. Materials and Methods: Solvent extracts prepared from high antioxidant native Australian fruits were analyzed for antioxidant capacity by the di (phenyl)-(2,4,6-trinitrophenyl) iminoazanium free radical scavenging assay. Antiproliferative activities against CaCo2 and HeLa cancer cells were determined by a multicellular tumor spheroid-based cell proliferation assay. Toxicity was determined by Artemia franciscana bioassay. Results: Methanolic extracts of all plant species displayed high antioxidant contents (equivalent to approximately 7–16 mg of vitamin C per gram of fruit extracted). Most aqueous extracts also contained relatively high antioxidant capacities. In contrast, the ethyl acetate, chloroform, and hexane extracts of most species (except lemon aspen and bush tomato) had lower antioxidant contents (below 1.5 mg of vitamin C equivalents per gram of plant material extracted). The antioxidant contents correlated with the ability of the extracts to inhibit proliferation of CaCo2 and HeLa cancer cell lines. The high antioxidant methanolic extracts of all species were potent inhibitors of cell proliferation. The methanolic lemon aspen extract was particularly effective, with IC50 values of 480 and 769 μg/mL against HeLa and CaCo2 cells, respectively. In contrast, the lower antioxidant ethyl acetate and hexane extracts (except the lemon aspen ethyl acetate extract) generally did not inhibit cancer cell proliferation or inhibited to only a minor degree. Indeed, most of the ethyl acetate and hexane extracts induced potent cell proliferation. The native tamarind ethyl acetate extract displayed low-moderate toxicity in the A. franciscana bioassay (LC50 values below 1000 μg/mL). All other extracts were nontoxic. A total of 145 unique mass signals were detected in the lemon aspen methanolic and aqueous extracts by nonbiased high-performance liquid chromatography-mass spectrometry analysis. Of these, 20 compounds were identified as being of particular interest due to their reported antioxidant and/or anticancer activities. Conclusions: The lack of toxicity and antiproliferative activity of the high antioxidant plant extracts against HeLa and CaCo2 cancer cell lines indicates their potential in the treatment and prevention of some cancers. SUMMARY
  • Australian fruit extracts with high antioxidant contents were potent inhibitors of CaCo2 and HeLa carcinoma cell proliferation
  • Methanolic lemon aspen extract was particularly potent, with IC50 values of 480 μg/mL (HeLa) and 769 μg/mL (CaCo2)
  • High.performance liquid chromatography.mass spectrometry.quadrupole time.of.flight analysis highlighted and putatively identified 20 compounds in the antiproliferative lemon aspen extracts
  • In contrast, lower antioxidant content extracts stimulated carcinoma cell proliferation
  • All extracts with antiproliferative activity were nontoxic in the Artemia nauplii assay.
Abbreviations used: DPPH: di (phenyl)- (2,4,6-trinitrophenyl) iminoazanium, HPLC: High-performance liquid chromatography, IC50: The concentration required to inhibit by 50%, LC50: The concentration required to achieve 50% mortality, MS: Mass spectrometry. Ian Edwin Cock


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1393    
    Printed25    
    Emailed0    
    PDF Downloaded23    
    Comments [Add]    

Recommend this journal